BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25511438)

  • 1. Influence of integration of TiO2 nanorods into its nanodot films on pre-osteoblast cell responses.
    Cheng K; Yu M; Liu Y; Ge F; Lin J; Weng W; Wang H
    Colloids Surf B Biointerfaces; 2015 Feb; 126():387-93. PubMed ID: 25511438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response.
    Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV
    Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts.
    Hori N; Iwasa F; Ueno T; Takeuchi K; Tsukimura N; Yamada M; Hattori M; Yamamoto A; Ogawa T
    Dent Mater; 2010 Apr; 26(4):275-87. PubMed ID: 20006380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces.
    Rivera-Chacon DM; Alvarado-Velez M; Acevedo-Morantes CY; Singh SP; Gultepe E; Nagesha D; Sridhar S; Ramirez-Vick JE
    J Biomed Nanotechnol; 2013 Jun; 9(6):1092-7. PubMed ID: 23858975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO
    He M; Chen X; Cheng K; Dong L; Weng W; Wang H
    J Mater Sci Mater Med; 2018 Aug; 29(9):136. PubMed ID: 30120587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model.
    Kubo K; Tsukimura N; Iwasa F; Ueno T; Saruwatari L; Aita H; Chiou WA; Ogawa T
    Biomaterials; 2009 Oct; 30(29):5319-29. PubMed ID: 19589591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.
    Zhuang XM; Zhou B; Ouyang JL; Sun HP; Wu YL; Liu Q; Deng FL
    Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel BSA immobilizing manner on modified titanium surface ameliorates osteoblast performance.
    Gomes OP; Feltran GS; Ferreira MR; Albano CS; Zambuzzi WF; Lisboa-Filho PN
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110888. PubMed ID: 32114272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.
    Wang G; Meng F; Ding C; Chu PK; Liu X
    Acta Biomater; 2010 Mar; 6(3):990-1000. PubMed ID: 19800425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of cellular activity at protein adsorbed biointerfaces with nano- to microscale dimensionality.
    Nune C; Misra RD; Somani MC; Karjalainen LP
    J Biomed Mater Res A; 2014 Jun; 102(6):1663-76. PubMed ID: 23776064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation.
    Lin K; Xia L; Gan J; Zhang Z; Chen H; Jiang X; Chang J
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8008-17. PubMed ID: 23862579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-adsorption of protein on electrochemically grooved nanostructured stainless steel implant and relationship to cellular activity.
    Nune KC; Misra RD
    J Biomed Nanotechnol; 2014 Jul; 10(7):1320-35. PubMed ID: 24804553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis.
    Zhang R; Liu X; Xiong Z; Huang Q; Yang X; Yan H; Ma J; Feng Q; Shen Z
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1123-1130. PubMed ID: 29517404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces.
    Lavenus S; Trichet V; Le Chevalier S; Hoornaert A; Louarn G; Layrolle P
    Nanomedicine (Lond); 2012 Jul; 7(7):967-80. PubMed ID: 22394187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein interactions with layers of TiO
    Kulkarni M; Mazare A; Park J; Gongadze E; Killian MS; Kralj S; von der Mark K; Iglič A; Schmuki P
    Acta Biomater; 2016 Nov; 45():357-366. PubMed ID: 27581395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings.
    Zhou J; Li B; Lu S; Zhang L; Han Y
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5358-65. PubMed ID: 23668394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface hydroxylation regulates cellular osteogeneses on TiO
    Wang L; Zhou B; Liu Z; Dong L; Cheng K; Weng W
    Colloids Surf B Biointerfaces; 2018 Jul; 167():213-219. PubMed ID: 29656204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating.
    Cecchinato F; Xue Y; Karlsson J; He W; Wennerberg A; Mustafa K; Andersson M; Jimbo R
    J Biomed Mater Res A; 2014 Nov; 102(11):3862-71. PubMed ID: 24339394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.
    Zhao L; Mei S; Chu PK; Zhang Y; Wu Z
    Biomaterials; 2010 Jul; 31(19):5072-82. PubMed ID: 20362328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the nanostructure of F-doped TiO2 films on osteoblast growth and function.
    Lozano D; Hernández-López JM; Esbrit P; Arenas MA; Gómez-Barrena E; de Damborenea J; Esteban J; Pérez-Jorge C; Pérez-Tanoira R; Conde A
    J Biomed Mater Res A; 2015 Jun; 103(6):1985-90. PubMed ID: 25230841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.