These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25511610)

  • 1. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
    Uba FI; Pullagurla SR; Sirasunthorn N; Wu J; Park S; Chantiwas R; Cho YK; Shin H; Soper SA
    Analyst; 2015 Jan; 140(1):113-26. PubMed ID: 25369728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible fabrication and applications of polymer nanochannels and nanoslits.
    Chantiwas R; Park S; Soper SA; Kim BC; Takayama S; Sunkara V; Hwang H; Cho YK
    Chem Soc Rev; 2011 Jul; 40(7):3677-702. PubMed ID: 21442106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices.
    Shoda K; Tanaka M; Mino K; Kazoe Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-injection molding with resin mold inserts for prototyping of nanofluidic devices for single molecular detection.
    Shiri F; Choi J; Vietz C; Rathnayaka C; Manoharan A; Shivanka S; Li G; Yu C; Murphy MC; Soper SA; Park S
    Lab Chip; 2023 Nov; 23(22):4876-4887. PubMed ID: 37870483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoplastic nanofluidic devices for biomedical applications.
    Weerakoon-Ratnayake KM; O'Neil CE; Uba FI; Soper SA
    Lab Chip; 2017 Jan; 17(3):362-381. PubMed ID: 28009883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.
    Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A
    Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplastic nanofluidic devices for identifying abasic sites in single DNA molecules.
    Vaidyanathan S; Weerakoon-Ratnayake KM; Uba FI; Hu B; Kaufman D; Choi J; Park S; Soper SA
    Lab Chip; 2021 Apr; 21(8):1579-1589. PubMed ID: 33651049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels.
    Rahmanian O; DeVoe DL
    Lab Chip; 2013 Mar; 13(6):1102-8. PubMed ID: 23344819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.