These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25511610)

  • 21. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules.
    Athapattu US; Rathnayaka C; Vaidyanathan S; Gamage SST; Choi J; Riahipour R; Manoharan A; Hall AR; Park S; Soper SA
    ACS Sens; 2021 Aug; 6(8):3133-3143. PubMed ID: 34406743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics.
    Trinh KTL; Thai DA; Lee NY
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.
    Jackson JM; Witek MA; Hupert ML; Brady C; Pullagurla S; Kamande J; Aufforth RD; Tignanelli CJ; Torphy RJ; Yeh JJ; Soper SA
    Lab Chip; 2014 Jan; 14(1):106-17. PubMed ID: 23900277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of nanofluidic patents.
    Dutta P; Morse J
    Recent Pat Nanotechnol; 2008; 2(3):150-9. PubMed ID: 19076049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices.
    Lachaux J; Alcaine C; Gómez-Escoda B; Perrault CM; Duplan DO; Wu PJ; Ochoa I; Fernandez L; Mercier O; Coudreuse D; Roy E
    Lab Chip; 2017 Jul; 17(15):2581-2594. PubMed ID: 28656191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device.
    Jiang Y; Liu N; Guo W; Xia F; Jiang L
    J Am Chem Soc; 2012 Sep; 134(37):15395-401. PubMed ID: 22954022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices.
    Kim M; Kim T
    Anal Chem; 2015 Nov; 87(22):11215-23. PubMed ID: 26140611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS-thermoplastic microfluidic devices
    Sivakumar R; Trinh KTL; Lee NY
    RSC Adv; 2020 Apr; 10(28):16502-16509. PubMed ID: 35498866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer.
    Jia Z; Choi J; Lee S; Soper SA; Park S
    Colloids Surf A Physicochem Eng Asp; 2022 Sep; 648():. PubMed ID: 36685784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in-mold packaging process for plastic fluidic devices.
    Yoo YE; Lee KH; Je TJ; Choi DS; Kim SK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):233-8. PubMed ID: 21446432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures.
    Heidt B; Rogosic R; Leoné N; Brás EJS; Cleij TJ; Harings JAW; Diliën H; Eersels K; van Grinsven B
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly sensitive immunosensor using a nanofluidic preconcentrator.
    Liao KP; Sung KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3368-70. PubMed ID: 19163431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.