These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25511641)
1. Consensus models for CDK5 inhibitors in silico and their application to inhibitor discovery. Fang J; Yang R; Gao L; Yang S; Pang X; Li C; He Y; Liu AL; Du GH Mol Divers; 2015 Feb; 19(1):149-62. PubMed ID: 25511641 [TBL] [Abstract][Full Text] [Related]
2. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions. Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792 [TBL] [Abstract][Full Text] [Related]
3. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102 [TBL] [Abstract][Full Text] [Related]
4. An in silico approach for the discovery of CDK5/p25 interaction inhibitors. Zhang B; Corbel C; Guéritte F; Couturier C; Bach S; Tan VB Biotechnol J; 2011 Jul; 6(7):871-81. PubMed ID: 21681969 [TBL] [Abstract][Full Text] [Related]
5. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Chatterjee A; Cutler SJ; Doerksen RJ; Khan IA; Williamson JS Bioorg Med Chem; 2014 Nov; 22(22):6409-21. PubMed ID: 25438765 [TBL] [Abstract][Full Text] [Related]
6. First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Corbel C; Wang Q; Bousserouel H; Hamdi A; Zhang B; Lozach O; Ferandin Y; Tan VB; Guéritte F; Colas P; Couturier C; Bach S Biotechnol J; 2011 Jul; 6(7):860-70. PubMed ID: 21681968 [TBL] [Abstract][Full Text] [Related]
7. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. Cheng F; Yu Y; Shen J; Yang L; Li W; Liu G; Lee PW; Tang Y J Chem Inf Model; 2011 May; 51(5):996-1011. PubMed ID: 21491913 [TBL] [Abstract][Full Text] [Related]
8. Potent inhibitors of CDK5 derived from roscovitine: synthesis, biological evaluation and molecular modelling. Demange L; Abdellah FN; Lozach O; Ferandin Y; Gresh N; Meijer L; Galons H Bioorg Med Chem Lett; 2013 Jan; 23(1):125-31. PubMed ID: 23218601 [TBL] [Abstract][Full Text] [Related]
9. Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models. Lian W; Fang J; Li C; Pang X; Liu AL; Du GH Mol Divers; 2016 May; 20(2):439-51. PubMed ID: 26689205 [TBL] [Abstract][Full Text] [Related]
10. New approaches to the discovery of cdk5 inhibitors. Glicksman MA; Cuny GD; Liu M; Dobson B; Auerbach K; Stein RL; Kosik KS Curr Alzheimer Res; 2007 Dec; 4(5):547-9. PubMed ID: 18220519 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Laha JK; Zhang X; Qiao L; Liu M; Chatterjee S; Robinson S; Kosik KS; Cuny GD Bioorg Med Chem Lett; 2011 Apr; 21(7):2098-101. PubMed ID: 21353545 [TBL] [Abstract][Full Text] [Related]
13. Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure based drug design. Darshit BS; Balaji B; Rani P; Ramanathan M J Mol Graph Model; 2014 Sep; 53():31-47. PubMed ID: 25064440 [TBL] [Abstract][Full Text] [Related]
14. Structure-activity relationships of 3,4-dihydro-1H-quinazolin-2-one derivatives as potential CDK5 inhibitors. Rzasa RM; Kaller MR; Liu G; Magal E; Nguyen TT; Osslund TD; Powers D; Santora VJ; Viswanadhan VN; Wang HL; Xiong X; Zhong W; Norman MH Bioorg Med Chem; 2007 Oct; 15(20):6574-95. PubMed ID: 17697781 [TBL] [Abstract][Full Text] [Related]
15. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Boulahjar R; Ouach A; Bourg S; Bonnet P; Lozach O; Meijer L; Guguen-Guillouzo C; Le Guevel R; Lazar S; Akssira M; Troin Y; Guillaumet G; Routier S Eur J Med Chem; 2015 Aug; 101():274-87. PubMed ID: 26142492 [TBL] [Abstract][Full Text] [Related]
16. Discovery and Optimization of Highly Selective Inhibitors of CDK5. Daniels MH; Malojcic G; Clugston SL; Williams B; Coeffet-Le Gal M; Pan-Zhou XR; Venkatachalan S; Harmange JC; Ledeboer M J Med Chem; 2022 Feb; 65(4):3575-3596. PubMed ID: 35143203 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Based Virtual Screening for the Identification of Cdk5 Inhibitors. Di Stefano M; Galati S; Ortore G; Caligiuri I; Rizzolio F; Ceni C; Bertini S; Bononi G; Granchi C; Macchia M; Poli G; Tuccinardi T Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142566 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Inhibitory Elements in the p5 Peptide Fragment of the CDK5 Activator, p35, CDKR1 Protein. Binukumar BK; Shukla V; Amin ND; Bhaskar M; Skuntz S; Steiner J; Winkler D; Pelech SL; Pant HC J Alzheimers Dis; 2015; 48(4):1009-17. PubMed ID: 26444778 [TBL] [Abstract][Full Text] [Related]