BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25511903)

  • 21. Exploitation of heterosis loci for yield and yield components in rice using chromosome segment substitution lines.
    Tao Y; Zhu J; Xu J; Wang L; Gu H; Zhou R; Yang Z; Zhou Y; Liang G
    Sci Rep; 2016 Nov; 6():36802. PubMed ID: 27833097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Population-based diallel analyses among nine historically recognized alfalfa germplasms.
    Segovia-Lerma A; Murray LW; Townsend MS; Ray IM
    Theor Appl Genet; 2004 Nov; 109(8):1568-75. PubMed ID: 15372154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.
    Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.).
    Geng X; Qu Y; Jia Y; He S; Pan Z; Wang L; Du X
    BMC Genomics; 2021 Feb; 22(1):123. PubMed ID: 33602146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.
    Huang X; Yang S; Gong J; Zhao Y; Feng Q; Gong H; Li W; Zhan Q; Cheng B; Xia J; Chen N; Hao Z; Liu K; Zhu C; Huang T; Zhao Q; Zhang L; Fan D; Zhou C; Lu Y; Weng Q; Wang ZX; Li J; Han B
    Nat Commun; 2015 Feb; 6():6258. PubMed ID: 25651972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers.
    Menkir A; Melake-Berhan A; The C; Ingelbrecht I; Adepoju A
    Theor Appl Genet; 2004 May; 108(8):1582-90. PubMed ID: 14985970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding.
    Zhao Y; Li Z; Liu G; Jiang Y; Maurer HP; Würschum T; Mock HP; Matros A; Ebmeyer E; Schachschneider R; Kazman E; Schacht J; Gowda M; Longin CF; Reif JC
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15624-9. PubMed ID: 26663911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of machine learning for identification of heterotic groups in sunflower through combined approach of phenotyping, genotyping and protein profiling.
    Ibrar D; Khan S; Raza M; Nawaz M; Hasnain Z; Kashif M; Rais A; Gul S; Ahmad R; Gaafar AZ
    Sci Rep; 2024 Mar; 14(1):7333. PubMed ID: 38538706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic differentiation analysis for the identification of complementary parental pools for sorghum hybrid breeding in Ethiopia.
    Mindaye TT; Mace ES; Godwin ID; Jordan DR
    Theor Appl Genet; 2015 Sep; 128(9):1765-75. PubMed ID: 26024715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances on the Study of Diurnal Flower-Opening Times of Rice.
    Wang M; Chen M; Huang Z; Zhou H; Liu Z
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Correlations between specific combining ability, heterosis and genetic distance in hybrid rice].
    Ni XL; Zhang T; Jiang KF; Yang L; Yang QH; Cao YJ; Wen CY; Zheng JK
    Yi Chuan; 2009 Aug; 31(8):849-54. PubMed ID: 19689947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of heterosis and genomic prediction-based establishment of heterotic patterns for developing better hybrids in pigeonpea.
    Saxena RK; Jiang Y; Khan AW; Zhao Y; Kumar Singh V; Bohra A; Sonappa M; Rathore A; Kumar CVS; Saxena K; Reif J; Varshney RK
    Plant Genome; 2021 Nov; 14(3):e20125. PubMed ID: 34337867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic composition of yield heterosis in an elite rice hybrid.
    Zhou G; Chen Y; Yao W; Zhang C; Xie W; Hua J; Xing Y; Xiao J; Zhang Q
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15847-52. PubMed ID: 23019369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in lentil production through heterosis: Evaluating generations and breeding systems.
    Suri GK; Braich S; Noy DM; Rosewarne GM; Cogan NOI; Kaur S
    PLoS One; 2022; 17(2):e0262857. PubMed ID: 35180225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines.
    Qian W; Sass O; Meng J; Li M; Frauen M; Jung C
    Theor Appl Genet; 2007 Jun; 115(1):27-34. PubMed ID: 17453172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The regulatory network mediated by circadian clock genes is related to heterosis in rice.
    Shen G; Hu W; Zhang B; Xing Y
    J Integr Plant Biol; 2015 Mar; 57(3):300-12. PubMed ID: 25040350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic diversity in elite inbred lines of maize and its association with heterosis.
    Fernandes EH; Schuster I; Scapim CA; Vieira ES; Coan MM
    Genet Mol Res; 2015 Jun; 14(2):6509-17. PubMed ID: 26125855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolome-based prediction of yield heterosis contributes to the breeding of elite rice.
    Dan Z; Chen Y; Zhao W; Wang Q; Huang W
    Life Sci Alliance; 2020 Jan; 3(1):. PubMed ID: 31836628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the molecular basis of heterosis for plant breeding.
    Liu J; Li M; Zhang Q; Wei X; Huang X
    J Integr Plant Biol; 2020 Mar; 62(3):287-298. PubMed ID: 30916464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can spelt wheat be used as heterotic group for hybrid wheat breeding?
    Akel W; Thorwarth P; Mirdita V; Weissman EA; Liu G; Würschum T; Longin CFH
    Theor Appl Genet; 2018 Apr; 131(4):973-984. PubMed ID: 29340753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.