These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25512105)

  • 21. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasensitive Real-Time Rolling Circle Amplification Detection Enhanced by Nicking-Induced Tandem-Acting Polymerases.
    Tian B; Fock J; Minero GAS; Garbarino F; Hansen MF
    Anal Chem; 2019 Aug; 91(15):10102-10109. PubMed ID: 31246001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe.
    Zhu D; Yan Y; Lei P; Shen B; Cheng W; Ju H; Ding S
    Anal Chim Acta; 2014 Oct; 846():44-50. PubMed ID: 25220140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multienzymatic disintegration of DNA-scaffolded magnetic nanoparticle assembly for malarial mitochondrial DNA detection.
    Li T; Meng F; Fang Y; Luo Y; He Y; Dong Z; Tian B
    Biosens Bioelectron; 2024 Feb; 246():115910. PubMed ID: 38086308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of rolling circle amplification and optomagnetic detection on a polymer chip.
    Garbarino F; Minero GAS; Rizzi G; Fock J; Hansen MF
    Biosens Bioelectron; 2019 Oct; 142():111485. PubMed ID: 31301578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of target nucleic acids and proteins by amplification of circularizable probes.
    Zhang DY; Liu B
    Expert Rev Mol Diagn; 2003 Mar; 3(2):237-48. PubMed ID: 12647998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.
    Kühnemund M; Nilsson M
    Biosens Bioelectron; 2015 May; 67():11-7. PubMed ID: 25000851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bead-based padlock rolling circle amplification for single DNA molecule counting.
    Sato K; Ishii R; Sasaki N; Sato K; Nilsson M
    Anal Biochem; 2013 Jun; 437(1):43-5. PubMed ID: 23467098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and identification of IHN and ISA viruses by isothermal DNA amplification in microcapillary tubes.
    McCarthy EL; Egeler TJ; Bickerstaff LE; Pereira da Cunha M; Millard PJ
    Anal Bioanal Chem; 2006 Dec; 386(7-8):1975-84. PubMed ID: 17072595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors.
    Stougaard M; Juul S; Andersen FF; Knudsen BR
    Integr Biol (Camb); 2011 Oct; 3(10):982-92. PubMed ID: 21927767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blu-ray based optomagnetic aptasensor for detection of small molecules.
    Yang J; Donolato M; Pinto A; Bosco FG; Hwu ET; Chen CH; Alstrøm TS; Lee GH; Schäfer T; Vavassori P; Boisen A; Lin Q; Hansen MF
    Biosens Bioelectron; 2016 Jan; 75():396-403. PubMed ID: 26342583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal amplification of padlock probes by rolling circle replication.
    Banér J; Nilsson M; Mendel-Hartvig M; Landegren U
    Nucleic Acids Res; 1998 Nov; 26(22):5073-8. PubMed ID: 9801302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CE combined with rolling circle amplification for sensitive DNA detection.
    Li N; Li J; Zhong W
    Electrophoresis; 2008 Jan; 29(2):424-32. PubMed ID: 18080251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations.
    Xiao X; Yuan C; Li T; Fock J; Svedlindh P; Tian B
    Biosens Bioelectron; 2022 Nov; 215():114560. PubMed ID: 35841765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection.
    Sato K; Tachihara A; Renberg B; Mawatari K; Sato K; Tanaka Y; Jarvius J; Nilsson M; Kitamori T
    Lab Chip; 2010 May; 10(10):1262-6. PubMed ID: 20445878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio.
    Clausson CM; Arngården L; Ishaq O; Klaesson A; Kühnemund M; Grannas K; Koos B; Qian X; Ranefall P; Krzywkowski T; Brismar H; Nilsson M; Wählby C; Söderberg O
    Sci Rep; 2015 Jul; 5():12317. PubMed ID: 26202090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology.
    Long Y; Zhou X; Xing D
    Biosens Bioelectron; 2011 Feb; 26(6):2897-904. PubMed ID: 21183330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.