These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 25512238)
1. Small molecular amine mediated synthesis of hydrophilic CdS nanorods and their photoelectrochemical water splitting performance. Bao C; Zhu G; Yang J; Liu M; Zhang R; Shen X Dalton Trans; 2015 Jan; 44(3):1465-72. PubMed ID: 25512238 [TBL] [Abstract][Full Text] [Related]
2. Facile electrochemical synthesis of CeO2@Ag@CdS nanotube arrays with enhanced photoelectrochemical water splitting performance. Zhao M; Li H; Shen X; Ji Z; Xu K Dalton Trans; 2015 Dec; 44(46):19935-41. PubMed ID: 26515189 [TBL] [Abstract][Full Text] [Related]
3. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H Ma Y; Liu Y; Bian Y; Zhu A; Yang Y; Pan J J Colloid Interface Sci; 2018 May; 518():140-148. PubMed ID: 29453104 [TBL] [Abstract][Full Text] [Related]
4. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
5. CdS/Zr:Fe Mahadik MA; Subramanian A; Chung HS; Cho M; Jang JS ChemSusChem; 2017 May; 10(9):2030-2039. PubMed ID: 28317268 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional WO Wang Y; Tian W; Chen L; Cao F; Guo J; Li L ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799 [TBL] [Abstract][Full Text] [Related]
7. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347 [TBL] [Abstract][Full Text] [Related]
8. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation. Vaddipalli SR; Sanivarapu SR; Vengatesan S; Lawrence JB; Eashwar M; Sreedhar G ACS Appl Mater Interfaces; 2016 Sep; 8(35):23049-59. PubMed ID: 27532805 [TBL] [Abstract][Full Text] [Related]
9. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity. Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161 [TBL] [Abstract][Full Text] [Related]
10. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940 [TBL] [Abstract][Full Text] [Related]
11. A uniformly decorated and photostable polydopamine-organic semiconductor to boost the photoelectrochemical water splitting performance of CdS photoanodes. Ruan M; Guo D; Jia Q Dalton Trans; 2021 Feb; 50(5):1913-1922. PubMed ID: 33475654 [TBL] [Abstract][Full Text] [Related]
12. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting. Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159 [TBL] [Abstract][Full Text] [Related]
13. Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Su F; Lu J; Tian Y; Ma X; Gong J Phys Chem Chem Phys; 2013 Aug; 15(29):12026-32. PubMed ID: 23728221 [TBL] [Abstract][Full Text] [Related]
14. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N Nat Commun; 2013; 4():2651. PubMed ID: 24136178 [TBL] [Abstract][Full Text] [Related]
15. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array. Bu Y; Chen Z; Li W; Yu J ACS Appl Mater Interfaces; 2013 Jun; 5(11):5097-104. PubMed ID: 23688263 [TBL] [Abstract][Full Text] [Related]
16. Assembling of Bi atoms on TiO Pang Y; Zang W; Kou Z; Zhang L; Xu G; Lv J; Gao X; Pan Z; Wang J; Wu Y Nanoscale; 2020 Feb; 12(7):4302-4308. PubMed ID: 32025688 [TBL] [Abstract][Full Text] [Related]
17. Construction of ZnO/ZnS/CdS/CuInS₂ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light. Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144 [TBL] [Abstract][Full Text] [Related]
18. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Sun B; Shi T; Peng Z; Sheng W; Jiang T; Liao G Nanoscale Res Lett; 2013 Nov; 8(1):462. PubMed ID: 24191909 [TBL] [Abstract][Full Text] [Related]
19. A ZnO/ZnFe Lan Y; Liu Z; Guo Z; Li X; Zhao L; Zhan L; Zhang M Dalton Trans; 2018 Sep; 47(35):12181-12187. PubMed ID: 30106080 [TBL] [Abstract][Full Text] [Related]
20. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting. Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]