BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 25512308)

  • 1. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.
    Bordeleau E; Purcell EB; Lafontaine DA; Fortier LC; Tamayo R; Burrus V
    J Bacteriol; 2015 Mar; 197(5):819-32. PubMed ID: 25512308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.
    Bordeleau E; Burrus V
    Curr Genet; 2015 Nov; 61(4):497-502. PubMed ID: 25800812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in
    McKee RW; Harvest CK; Tamayo R
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
    Purcell EB; McKee RW; Bordeleau E; Burrus V; Tamayo R
    J Bacteriol; 2016 Feb; 198(3):565-77. PubMed ID: 26598364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus.
    Skotnicka D; Petters T; Heering J; Hoppert M; Kaever V; Søgaard-Andersen L
    J Bacteriol; 2016 Jan; 198(1):77-90. PubMed ID: 26124238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
    Ribbe J; Baker AE; Euler S; O'Toole GA; Maier B
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens.
    Hendrick WA; Orr MW; Murray SR; Lee VT; Melville SB
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28242722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of c-di-GMP-Responsive Riboswitches.
    Peltier J; Soutourina O
    Methods Mol Biol; 2017; 1657():377-402. PubMed ID: 28889309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly.
    Jain R; Sliusarenko O; Kazmierczak BI
    PLoS Pathog; 2017 Aug; 13(8):e1006594. PubMed ID: 28854278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase.
    Purcell EB; McKee RW; Courson DS; Garrett EM; McBride SM; Cheney RE; Tamayo R
    Infect Immun; 2017 Sep; 85(9):. PubMed ID: 28652311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysobacter PilR, the Regulator of Type IV Pilus Synthesis, Controls Antifungal Antibiotic Production via a Cyclic di-GMP Pathway.
    Chen Y; Xia J; Su Z; Xu G; Gomelsky M; Qian G; Liu F
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087536
    [No Abstract]   [Full Text] [Related]  

  • 13. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively.
    Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO
    Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae.
    Kariisa AT; Weeks K; Tamayo R
    PLoS One; 2016; 11(2):e0148478. PubMed ID: 26849223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile.
    Purcell EB; McKee RW; McBride SM; Waters CM; Tamayo R
    J Bacteriol; 2012 Jul; 194(13):3307-16. PubMed ID: 22522894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structure and function of c-di-GMP riboswitches].
    Li X; Chen F; Xiao J; He J
    Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1357-1368. PubMed ID: 28956387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
    Smith KD; Shanahan CA; Moore EL; Simon AC; Strobel SA
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7757-62. PubMed ID: 21518891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms.
    Pursley BR; Maiden MM; Hsieh ML; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer.
    Smith KD; Lipchock SV; Strobel SA
    Biochemistry; 2012 Jan; 51(1):425-32. PubMed ID: 22148472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.