BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25512382)

  • 1. Kinetic and structural characterization of the interaction between the FMN binding domain of cytochrome P450 reductase and cytochrome c.
    Huang R; Zhang M; Rwere F; Waskell L; Ramamoorthy A
    J Biol Chem; 2015 Feb; 290(8):4843-4855. PubMed ID: 25512382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone.
    Rwere F; Xia C; Im S; Haque MM; Stuehr DJ; Waskell L; Kim JJ
    J Biol Chem; 2016 Jul; 291(28):14639-61. PubMed ID: 27189945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the cytochrome P450 reductase-cytochrome
    Freeman SL; Martel A; Devos JM; Basran J; Raven EL; Roberts GCK
    J Biol Chem; 2018 Apr; 293(14):5210-5219. PubMed ID: 29475945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing.
    Krishnarjuna B; Yamazaki T; Anantharamaiah GM; Ramamoorthy A
    Chem Commun (Camb); 2021 May; 57(39):4819-4822. PubMed ID: 33982687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer.
    Das A; Sligar SG
    Biochemistry; 2009 Dec; 48(51):12104-12. PubMed ID: 19908820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FMN "140s Loop" of Cytochrome P450 Reductase Controls Electron Transfer to Cytochrome P450.
    Rwere F; Im S; Waskell L
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the redox properties of human NADPH-cytochrome P450 reductase.
    Munro AW; Noble MA; Robledo L; Daff SN; Chapman SK
    Biochemistry; 2001 Feb; 40(7):1956-63. PubMed ID: 11329262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding.
    Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR.
    Vincent B; Morellet N; Fatemi F; Aigrain L; Truan G; Guittet E; Lescop E
    J Mol Biol; 2012 Jul; 420(4-5):296-309. PubMed ID: 22543241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase.
    Meints CE; Parke SM; Wolthers KR
    Arch Biochem Biophys; 2014 Apr; 547():18-26. PubMed ID: 24589657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of Redox and Structural States in Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation.
    Iijima M; Ohnuki J; Sato T; Sugishima M; Takano M
    Sci Rep; 2019 Jun; 9(1):9341. PubMed ID: 31249341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-lived neutral FMN and FAD semiquinones are transient intermediates in cryo-reduced yeast NADPH-cytochrome P450 reductase.
    Davydov RM; Jennings G; Hoffman BM; Podust LM
    Arch Biochem Biophys; 2019 Sep; 673():108080. PubMed ID: 31445894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the re-face loop spanning residues 536-541 and its interactions with the cofactor in the flavin mononucleotide-binding domain of flavocytochrome P450 from Bacillus megaterium.
    Kasim M; Chen HC; Swenson RP
    Biochemistry; 2009 Jun; 48(23):5131-41. PubMed ID: 19432415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of NADPH-cytochrome P450 oxidoreductase are essential for catalysis and cofactor binding.
    Xia C; Hamdane D; Shen AL; Choi V; Kasper CB; Pearl NM; Zhang H; Im SC; Waskell L; Kim JJ
    J Biol Chem; 2011 May; 286(18):16246-60. PubMed ID: 21345800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.