BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25512598)

  • 1. Modulation of CFTR gating by permeant ions.
    Yeh HI; Yeh JT; Hwang TC
    J Gen Physiol; 2015 Jan; 145(1):47-60. PubMed ID: 25512598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate.
    Lin WY; Sohma Y; Hwang TC
    Mol Pharmacol; 2016 Sep; 90(3):275-85. PubMed ID: 27413118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common mechanism for CFTR potentiators.
    Yeh HI; Sohma Y; Conrath K; Hwang TC
    J Gen Physiol; 2017 Dec; 149(12):1105-1118. PubMed ID: 29079713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.
    Jih KY; Hwang TC
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4404-9. PubMed ID: 23440202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and pharmacological characterization of the N1303K mutant CFTR.
    DeStefano S; Gees M; Hwang TC
    J Cyst Fibros; 2018 Sep; 17(5):573-581. PubMed ID: 29887518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl
    Wang Y; Cai Z; Gosling M; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L846-L857. PubMed ID: 30136610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.
    Eckford PD; Li C; Ramjeesingh M; Bear CE
    J Biol Chem; 2012 Oct; 287(44):36639-49. PubMed ID: 22942289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-dependent modulation of CFTR gating by pyrophosphate.
    Tsai MF; Shimizu H; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2009 Apr; 133(4):405-19. PubMed ID: 19332621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR).
    Bompadre SG; Ai T; Cho JH; Wang X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):361-75. PubMed ID: 15767295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
    Wang W; Bernard K; Li G; Kirk KL
    J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.