BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25513731)

  • 1. Interfacial oxygen stabilizes composite silicon anodes.
    Sun CF; Zhu H; Okada M; Gaskell K; Inoue Y; Hu L; Wang Y
    Nano Lett; 2015 Jan; 15(1):703-8. PubMed ID: 25513731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NiSi(x)/a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries.
    Han X; Chen H; Li X; Lai S; Xu Y; Li C; Chen S; Yang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):673-9. PubMed ID: 26670955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
    Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery.
    Li P; Hwang JY; Sun YK
    ACS Nano; 2019 Feb; 13(2):2624-2633. PubMed ID: 30759341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Densely Compacted Graphite/Si/SiO
    Wu H; Zheng L; Du N; Sun B; Ma J; Jiang Y; Gong J; Chen H; Wang L
    ACS Appl Mater Interfaces; 2021 May; 13(19):22323-22331. PubMed ID: 33955750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.
    Zhou M; Li X; Wang B; Zhang Y; Ning J; Xiao Z; Zhang X; Chang Y; Zhi L
    Nano Lett; 2015 Sep; 15(9):6222-8. PubMed ID: 26308100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries.
    Ngo DT; Le HTT; Pham XM; Park CN; Park CJ
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32790-32800. PubMed ID: 28875692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
    Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y
    ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Batteries with Nearly Maximum Metal Storage.
    Raji AO; Villegas Salvatierra R; Kim ND; Fan X; Li Y; Silva GAL; Sha J; Tour JM
    ACS Nano; 2017 Jun; 11(6):6362-6369. PubMed ID: 28511004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.
    Pandey GP; Klankowski SA; Li Y; Sun XS; Wu J; Rojeski RA; Li J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20909-18. PubMed ID: 26325385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Rearrangement of Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy and Long-Life Lithium-Ion Batteries.
    Jeong MG; Du HL; Islam M; Lee JK; Sun YK; Jung HG
    Nano Lett; 2017 Sep; 17(9):5600-5606. PubMed ID: 28845992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode.
    Kim D; Park M; Kim SM; Shim HC; Hyun S; Han SM
    ACS Nano; 2018 Nov; 12(11):10903-10913. PubMed ID: 30179496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Construction of High-Performing Compact Si-SiO
    Wang R; Wang J; Chen S; Bao W; Li D; Zhang X; Liu Q; Song T; Su Y; Tan G
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5008-5016. PubMed ID: 33478210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface Engineering of Silicon/Carbon Thin-Film Anodes for High-Rate Lithium-Ion Batteries.
    Tong L; Wang P; Fang W; Guo X; Bao W; Yang Y; Shen S; Qiu F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29242-29252. PubMed ID: 32484322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries.
    Jo C; Groombridge AS; De La Verpilliere J; Lee JT; Son Y; Liang HL; Boies AM; De Volder M
    ACS Nano; 2020 Jan; 14(1):698-707. PubMed ID: 31834775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes.
    An W; Gao B; Mei S; Xiang B; Fu J; Wang L; Zhang Q; Chu PK; Huo K
    Nat Commun; 2019 Mar; 10(1):1447. PubMed ID: 30926799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries.
    Choi J; Kim K; Jeong J; Cho KY; Ryou MH; Lee YM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14851-8. PubMed ID: 26075943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.