These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2155 related articles for article (PubMed ID: 25513782)

  • 1. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
    Tsai SQ; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Thapar V; Wyvekens N; Khayter C; Iafrate AJ; Le LP; Aryee MJ; Joung JK
    Nat Biotechnol; 2015 Feb; 33(2):187-197. PubMed ID: 25513782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.
    Frock RL; Hu J; Meyers RM; Ho YJ; Kii E; Alt FW
    Nat Biotechnol; 2015 Feb; 33(2):179-86. PubMed ID: 25503383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tag-seq: a convenient and scalable method for genome-wide specificity assessment of CRISPR/Cas nucleases.
    Huang H; Hu Y; Huang G; Ma S; Feng J; Wang D; Lin Y; Zhou J; Rong Z
    Commun Biol; 2021 Jul; 4(1):830. PubMed ID: 34215845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq.
    Malinin NL; Lee G; Lazzarotto CR; Li Y; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Iafrate AJ; Le LP; Aryee MJ; Joung JK; Tsai SQ
    Nat Protoc; 2021 Dec; 16(12):5592-5615. PubMed ID: 34773119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massively targeted evaluation of therapeutic CRISPR off-targets in cells.
    Pan X; Qu K; Yuan H; Xiang X; Anthon C; Pashkova L; Liang X; Han P; Corsi GI; Xu F; Liu P; Zhong J; Zhou Y; Ma T; Jiang H; Liu J; Wang J; Jessen N; Bolund L; Yang H; Xu X; Church GM; Gorodkin J; Lin L; Luo Y
    Nat Commun; 2022 Jul; 13(1):4049. PubMed ID: 35831290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency.
    Chung CH; Allen AG; Sullivan NT; Atkins A; Nonnemacher MR; Wigdahl B; Dampier W
    Mol Ther; 2020 Jan; 28(1):19-28. PubMed ID: 31672284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.
    Kim D; Bae S; Park J; Kim E; Kim S; Yu HR; Hwang J; Kim JI; Kim JS
    Nat Methods; 2015 Mar; 12(3):237-43, 1 p following 243. PubMed ID: 25664545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq.
    Kim D; Kang BC; Kim JS
    Nat Protoc; 2021 Feb; 16(2):1170-1192. PubMed ID: 33462439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
    Zhu LJ; Lawrence M; Gupta A; Pagès H; Kucukural A; Garber M; Wolfe SA
    BMC Genomics; 2017 May; 18(1):379. PubMed ID: 28506212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iGUIDE Method for CRISPR Off-Target Detection.
    Nobles CL
    Methods Mol Biol; 2021; 2189():71-80. PubMed ID: 33180294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise and broad scope genome editing based on high-specificity Cas9 nickases.
    Wang Q; Liu J; Janssen JM; Le Bouteiller M; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2021 Jan; 49(2):1173-1198. PubMed ID: 33398349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
    Cho SW; Kim S; Kim Y; Kweon J; Kim HS; Bae S; Kim JS
    Genome Res; 2014 Jan; 24(1):132-41. PubMed ID: 24253446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking.
    Chen X; Tasca F; Wang Q; Liu J; Janssen JM; Brescia MD; Bellin M; Szuhai K; Kenrick J; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2020 Jan; 48(2):974-995. PubMed ID: 31799604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide detection and analysis of CRISPR-Cas off-targets.
    Rodríguez TC; Dadafarin S; Pratt HE; Liu P; Amrani N; Zhu LJ
    Prog Mol Biol Transl Sci; 2021; 181():31-43. PubMed ID: 34127199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.
    Müller M; Lee CM; Gasiunas G; Davis TH; Cradick TJ; Siksnys V; Bao G; Cathomen T; Mussolino C
    Mol Ther; 2016 Mar; 24(3):636-44. PubMed ID: 26658966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq.
    Lazzarotto CR; Nguyen NT; Tang X; Malagon-Lopez J; Guo JA; Aryee MJ; Joung JK; Tsai SQ
    Nat Protoc; 2018 Nov; 13(11):2615-2642. PubMed ID: 30341435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR off-target detection with DISCOVER-seq.
    Wienert B; Wyman SK; Yeh CD; Conklin BR; Corn JE
    Nat Protoc; 2020 May; 15(5):1775-1799. PubMed ID: 32313254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide detection of CRISPR editing in vivo using GUIDE-tag.
    Liang SQ; Liu P; Smith JL; Mintzer E; Maitland S; Dong X; Yang Q; Lee J; Haynes CM; Zhu LJ; Watts JK; Sontheimer EJ; Wolfe SA; Xue W
    Nat Commun; 2022 Jan; 13(1):437. PubMed ID: 35064134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 108.