BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25513809)

  • 1. Construction and analyses of human large-scale tissue specific networks.
    Liu W; Wang J; Wang T; Xie H
    PLoS One; 2014; 9(12):e115074. PubMed ID: 25513809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global versus local hubs in human protein-protein interaction network.
    Kiran M; Nagarajaram HA
    J Proteome Res; 2013 Dec; 12(12):5436-46. PubMed ID: 24050456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of tissue/disease specific integrated networks using directed graphlet signatures.
    Sonmez AB; Can T
    BMC Bioinformatics; 2017 Mar; 18(Suppl 4):135. PubMed ID: 28361704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression.
    Zanzoni A; Brun C
    Methods; 2016 Jan; 93():103-9. PubMed ID: 26386316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.
    Kiran M; Nagarajaram HA
    Mol Biosyst; 2016 Aug; 12(9):2875-82. PubMed ID: 27400769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.
    Huttlin EL; Bruckner RJ; Navarrete-Perea J; Cannon JR; Baltier K; Gebreab F; Gygi MP; Thornock A; Zarraga G; Tam S; Szpyt J; Gassaway BM; Panov A; Parzen H; Fu S; Golbazi A; Maenpaa E; Stricker K; Guha Thakurta S; Zhang T; Rad R; Pan J; Nusinow DP; Paulo JA; Schweppe DK; Vaites LP; Harper JW; Gygi SP
    Cell; 2021 May; 184(11):3022-3040.e28. PubMed ID: 33961781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of housekeeping and tissue-specific driver nodes in human protein interaction networks.
    Zhang XF; Ou-Yang L; Dai DQ; Wu MY; Zhu Y; Yan H
    BMC Bioinformatics; 2016 Sep; 17(1):358. PubMed ID: 27612563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution.
    Hormozdiari F; Berenbrink P; Przulj N; Sahinalp SC
    PLoS Comput Biol; 2007 Jul; 3(7):e118. PubMed ID: 17616981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network.
    Li M; Meng X; Zheng R; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):817-827. PubMed ID: 28885159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic protein interaction network construction and applications.
    Wang J; Peng X; Peng W; Wu FX
    Proteomics; 2014 Mar; 14(4-5):338-52. PubMed ID: 24339054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive resource of interacting protein regions for refining human transcription factor networks.
    Miyamoto-Sato E; Fujimori S; Ishizaka M; Hirai N; Masuoka K; Saito R; Ozawa Y; Hino K; Washio T; Tomita M; Yamashita T; Oshikubo T; Akasaka H; Sugiyama J; Matsumoto Y; Yanagawa H
    PLoS One; 2010 Feb; 5(2):e9289. PubMed ID: 20195357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the functional and structural characterization of hubs in protein-protein interaction networks.
    Bertolazzi P; Bock ME; Guerra C
    Biotechnol Adv; 2013; 31(2):274-86. PubMed ID: 23228981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide prediction of self-interacting proteins based on multiple properties.
    Liu Z; Guo F; Zhang J; Wang J; Lu L; Li D; He F
    Mol Cell Proteomics; 2013 Jun; 12(6):1689-700. PubMed ID: 23422585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network legos: building blocks of cellular wiring diagrams.
    Murali TM; Rivera CG
    J Comput Biol; 2008 Sep; 15(7):829-44. PubMed ID: 18707557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INBIA: a boosting methodology for proteomic network inference.
    Sardina DS; Micale G; Ferro A; Pulvirenti A; Giugno R
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):188. PubMed ID: 30066650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields.
    Zhu L; Hofestadt R; Ester M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1471-1482. PubMed ID: 30736003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific functional networks for prioritizing phenotype and disease genes.
    Guan Y; Gorenshteyn D; Burmeister M; Wong AK; Schimenti JC; Handel MA; Bult CJ; Hibbs MA; Troyanskaya OG
    PLoS Comput Biol; 2012; 8(9):e1002694. PubMed ID: 23028291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical controllability in proteome-wide protein interaction network integrating transcriptome.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2016 Apr; 6():23541. PubMed ID: 27040162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.