BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 25513828)

  • 1. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.
    Jackman JA; Tabaei SR; Zhao Z; Yorulmaz S; Cho NJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):959-68. PubMed ID: 25513828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-assisted lipid bilayer formation on silicon dioxide and gold.
    Tabaei SR; Choi JH; Haw Zan G; Zhdanov VP; Cho NJ
    Langmuir; 2014 Sep; 30(34):10363-73. PubMed ID: 25111254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of charged membranes by the solvent-assisted lipid bilayer (SALB) formation method on SiO2 and Al2O3.
    Tabaei SR; Vafaei S; Cho NJ
    Phys Chem Chem Phys; 2015 May; 17(17):11546-52. PubMed ID: 25858554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a planar zwitterionic lipid bilayer on titanium oxide.
    Cho NJ; Frank CW
    Langmuir; 2010 Oct; 26(20):15706-10. PubMed ID: 20857902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-assisted lipid self-assembly at hydrophilic surfaces: factors influencing the formation of supported membranes.
    Tabaei SR; Jackman JA; Kim SO; Zhdanov VP; Cho NJ
    Langmuir; 2015 Mar; 31(10):3125-34. PubMed ID: 25679066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Packing density changes of supported lipid bilayers observed by fluorescence microscopy and quartz crystal microbalance-dissipation.
    Kataoka-Hamai C; Higuchi M
    J Phys Chem B; 2014 Sep; 118(37):10934-44. PubMed ID: 25163021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D).
    Li X; Wang R; Wicaksana F; Zhao Y; Tang C; Torres J; Fane AG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():446-52. PubMed ID: 23850749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide.
    Cho NJ; Jackman JA; Liu M; Frank CW
    Langmuir; 2011 Apr; 27(7):3739-48. PubMed ID: 21366275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid supported lipid bilayers containing monosialoganglioside GM1: a QCM-D and FRAP study.
    Weng KC; Kanter JL; Robinson WH; Frank CW
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):76-84. PubMed ID: 16730958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle adsorption on mesoporous silica and titania.
    Claesson M; Cho NJ; Frank CW; Andersson M
    Langmuir; 2010 Nov; 26(22):16630-3. PubMed ID: 20932045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of supported bilayers on silica substrates.
    Anderson TH; Min Y; Weirich KL; Zeng H; Fygenson D; Israelachvili JN
    Langmuir; 2009 Jun; 25(12):6997-7005. PubMed ID: 19354208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and characterization of fluid lipid bilayers on alumina.
    Mager MD; Almquist B; Melosh NA
    Langmuir; 2008 Nov; 24(22):12734-7. PubMed ID: 18942863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory.
    Oleson TA; Sahai N
    J Colloid Interface Sci; 2010 Dec; 352(2):316-26. PubMed ID: 20869066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces.
    Pfeiffer I; Petronis S; Köper I; Kasemo B; Zäch M
    J Phys Chem B; 2010 Apr; 114(13):4623-31. PubMed ID: 20232804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rupture of zwitterionic lipid vesicles by an amphipathic, α-helical peptide: indirect effects of sensor surface and implications for experimental analysis.
    Zan GH; Cho NJ
    Colloids Surf B Biointerfaces; 2014 Sep; 121():340-6. PubMed ID: 25059728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces.
    Oleson TA; Sahai N; Pedersen JA
    J Colloid Interface Sci; 2010 Dec; 352(2):327-36. PubMed ID: 20869065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of pit-spanning phospholipid bilayers on nanostructured silicon dioxide surfaces for studying biological membrane events.
    Pfeiffer I; Zäch M
    Methods Mol Biol; 2013; 991():113-25. PubMed ID: 23546664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.