These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25513834)
1. How does tunneling contribute to counterintuitive H-abstraction reactivity of nonheme Fe(IV)O oxidants with alkanes? Mandal D; Ramanan R; Usharani D; Janardanan D; Wang B; Shaik S J Am Chem Soc; 2015 Jan; 137(2):722-33. PubMed ID: 25513834 [TBL] [Abstract][Full Text] [Related]
2. A two-state reactivity rationale for counterintuitive axial ligand effects on the C-H activation reactivity of nonheme FeIV=O oxidants. Hirao H; Que L; Nam W; Shaik S Chemistry; 2008; 14(6):1740-56. PubMed ID: 18186094 [TBL] [Abstract][Full Text] [Related]
3. Axial ligand tuning of a nonheme iron(IV)-oxo unit for hydrogen atom abstraction. Sastri CV; Lee J; Oh K; Lee YJ; Lee J; Jackson TA; Ray K; Hirao H; Shin W; Halfen JA; Kim J; Que L; Shaik S; Nam W Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19181-6. PubMed ID: 18048327 [TBL] [Abstract][Full Text] [Related]
4. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation. Tang H; Guan J; Liu H; Huang X Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218 [TBL] [Abstract][Full Text] [Related]
5. What factors influence the reactivity of C-H hydroxylation and C=C epoxidation by [Fe(IV)(L(ax))(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)](n+). Yi W; Yuan L; Kun Y; Zhengwen H; Jing T; Xu F; Hong G; Yong W J Biol Inorg Chem; 2015 Oct; 20(7):1123-34. PubMed ID: 26345158 [TBL] [Abstract][Full Text] [Related]
6. Contrasting effects of axial ligands on electron-transfer versus proton-coupled electron-transfer reactions of nonheme oxoiron(IV) complexes. Fukuzumi S; Kotani H; Suenobu T; Hong S; Lee YM; Nam W Chemistry; 2010 Jan; 16(1):354-61. PubMed ID: 19937616 [TBL] [Abstract][Full Text] [Related]
7. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes. Mandal D; Mallick D; Shaik S Acc Chem Res; 2018 Jan; 51(1):107-117. PubMed ID: 29297671 [TBL] [Abstract][Full Text] [Related]
8. Kinetic Isotope Effect Probes the Reactive Spin State, As Well As the Geometric Feature and Constitution of the Transition State during H-Abstraction by Heme Compound II Complexes. Mallick D; Shaik S J Am Chem Soc; 2017 Aug; 139(33):11451-11459. PubMed ID: 28737390 [TBL] [Abstract][Full Text] [Related]
9. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. Nam W; Lee YM; Fukuzumi S Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675 [TBL] [Abstract][Full Text] [Related]
11. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(IV)-oxo complexes. Tang H; Guan J; Zhang L; Liu H; Huang X Phys Chem Chem Phys; 2012 Oct; 14(37):12863-74. PubMed ID: 22890313 [TBL] [Abstract][Full Text] [Related]
12. Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants. Kumar S; Faponle AS; Barman P; Vardhaman AK; Sastri CV; Kumar D; de Visser SP J Am Chem Soc; 2014 Dec; 136(49):17102-15. PubMed ID: 25392052 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic insights into the C-H bond activation of hydrocarbons by chromium(IV) oxo and chromium(III) superoxo complexes. Cho KB; Kang H; Woo J; Park YJ; Seo MS; Cho J; Nam W Inorg Chem; 2014 Jan; 53(1):645-52. PubMed ID: 24299279 [TBL] [Abstract][Full Text] [Related]
14. A density functional theory analysis of the C-H activation reactivity of iron(IV)-oxo complexes with an 'O' substituted tetramethylcyclam macrocycle. Kaur L; Mandal D Dalton Trans; 2024 Apr; 53(17):7527-7535. PubMed ID: 38597582 [TBL] [Abstract][Full Text] [Related]
15. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands. Kang Y; Chen H; Jeong YJ; Lai W; Bae EH; Shaik S; Nam W Chemistry; 2009 Oct; 15(39):10039-46. PubMed ID: 19697378 [TBL] [Abstract][Full Text] [Related]
16. Large equatorial ligand effects on C-H bond activation by nonheme iron(IV)-oxo complexes. Sun X; Geng C; Huo R; Ryde U; Bu Y; Li J J Phys Chem B; 2014 Feb; 118(6):1493-500. PubMed ID: 24471414 [TBL] [Abstract][Full Text] [Related]
17. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data. Doll KM; Finke RG Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106 [TBL] [Abstract][Full Text] [Related]
18. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study. Mai BK; Kim Y Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359 [TBL] [Abstract][Full Text] [Related]
19. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insight into the hydroxylation of alkanes by a nonheme iron(V)-oxo complex. Kwon E; Cho KB; Hong S; Nam W Chem Commun (Camb); 2014 May; 50(42):5572-5. PubMed ID: 24722791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]