These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25513834)
21. Effect of the substituent on C-H activation catalyzed by a non-heme Fe(IV)O complex: a computational investigation of reactivity and hydrogen tunneling. Katoch A; Mandal D Dalton Trans; 2022 Aug; 51(31):11641-11649. PubMed ID: 35792604 [TBL] [Abstract][Full Text] [Related]
22. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes. Rosa A; Ricciardi G Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694 [TBL] [Abstract][Full Text] [Related]
23. Comparison of high-spin and low-spin nonheme Fe(III)-OOH complexes in O-O bond homolysis and H-atom abstraction reactivities. Liu LV; Hong S; Cho J; Nam W; Solomon EI J Am Chem Soc; 2013 Feb; 135(8):3286-99. PubMed ID: 23368958 [TBL] [Abstract][Full Text] [Related]
24. The axial ligand effect on aliphatic and aromatic hydroxylation by non-heme iron(IV)-oxo biomimetic complexes. de Visser SP; Latifi R; Tahsini L; Nam W Chem Asian J; 2011 Feb; 6(2):493-504. PubMed ID: 21254427 [TBL] [Abstract][Full Text] [Related]
25. Analysis of an alternative to the H-atom abstraction mechanism in methane C-H bond activation by nonheme iron(IV)-oxo oxidants. Tang H; Guan J; Liu H; Huang X Dalton Trans; 2013 Jul; 42(28):10260-70. PubMed ID: 23732441 [TBL] [Abstract][Full Text] [Related]
26. Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes. Cho KB; Wu X; Lee YM; Kwon YH; Shaik S; Nam W J Am Chem Soc; 2012 Dec; 134(50):20222-5. PubMed ID: 23205855 [TBL] [Abstract][Full Text] [Related]
27. Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. Klein JEMN; Mandal D; Ching WM; Mallick D; Que L; Shaik S J Am Chem Soc; 2017 Dec; 139(51):18705-18713. PubMed ID: 29179544 [TBL] [Abstract][Full Text] [Related]
28. Interplay of Tunneling, Two-State Reactivity, and Bell-Evans-Polanyi Effects in C-H Activation by Nonheme Fe(IV)O Oxidants. Mandal D; Shaik S J Am Chem Soc; 2016 Feb; 138(7):2094-7. PubMed ID: 26824716 [TBL] [Abstract][Full Text] [Related]
29. Effect of external electric fields on the C-H bond activation reactivity of nonheme iron-oxo reagents. Hirao H; Chen H; Carvajal MA; Wang Y; Shaik S J Am Chem Soc; 2008 Mar; 130(11):3319-27. PubMed ID: 18298096 [TBL] [Abstract][Full Text] [Related]
30. Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction. Karamzadeh B; Singh D; Nam W; Kumar D; de Visser SP Phys Chem Chem Phys; 2014 Nov; 16(41):22611-22. PubMed ID: 25231726 [TBL] [Abstract][Full Text] [Related]
31. Highly reactive nonheme iron(III) iodosylarene complexes in alkane hydroxylation and sulfoxidation reactions. Hong S; Wang B; Seo MS; Lee YM; Kim MJ; Kim HR; Ogura T; Garcia-Serres R; Clémancey M; Latour JM; Nam W Angew Chem Int Ed Engl; 2014 Jun; 53(25):6388-92. PubMed ID: 24820976 [TBL] [Abstract][Full Text] [Related]
32. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. Doll KM; Bender BR; Finke RG J Am Chem Soc; 2003 Sep; 125(36):10877-84. PubMed ID: 12952467 [TBL] [Abstract][Full Text] [Related]
33. Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes. Kwon YH; Mai BK; Lee YM; Dhuri SN; Mandal D; Cho KB; Kim Y; Shaik S; Nam W J Phys Chem Lett; 2015 Apr; 6(8):1472-6. PubMed ID: 26263154 [TBL] [Abstract][Full Text] [Related]
34. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules. Usharani D; Janardanan D; Li C; Shaik S Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564 [TBL] [Abstract][Full Text] [Related]
35. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations. Comba P; Wunderlich S Chemistry; 2010 Jun; 16(24):7293-9. PubMed ID: 20458709 [TBL] [Abstract][Full Text] [Related]
36. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)-Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. Bae SH; Li XX; Seo MS; Lee YM; Fukuzumi S; Nam W J Am Chem Soc; 2019 May; 141(19):7675-7679. PubMed ID: 31034219 [TBL] [Abstract][Full Text] [Related]
37. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes. Hirao H; Kumar D; Que L; Shaik S J Am Chem Soc; 2006 Jul; 128(26):8590-606. PubMed ID: 16802826 [TBL] [Abstract][Full Text] [Related]
39. Theoretical study of the mechanism of oxoiron(IV) formation from H2O2 and a nonheme iron(II) complex: O-O cleavage involving proton-coupled electron transfer. Hirao H; Li F; Que L; Morokuma K Inorg Chem; 2011 Jul; 50(14):6637-48. PubMed ID: 21678930 [TBL] [Abstract][Full Text] [Related]
40. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes. de Visser SP; Oh K; Han AR; Nam W Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]