These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25513841)
1. Thermodynamics of small alkali metal halide cluster ions: comparison of classical molecular simulations with experiment and quantum chemistry. Vlcek L; Uhlik F; Moucka F; Nezbeda I; Chialvo AA J Phys Chem A; 2015 Jan; 119(3):488-500. PubMed ID: 25513841 [TBL] [Abstract][Full Text] [Related]
2. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Lamoureux G; Roux B J Phys Chem B; 2006 Feb; 110(7):3308-22. PubMed ID: 16494345 [TBL] [Abstract][Full Text] [Related]
3. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related]
4. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. Geerke DP; van Gunsteren WF J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737 [TBL] [Abstract][Full Text] [Related]
5. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field. Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY J Phys Chem B; 2015 Jul; 119(29):9401-16. PubMed ID: 25578354 [TBL] [Abstract][Full Text] [Related]
6. Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures. Li X; Tu Y; Tian H; Agren H J Chem Phys; 2010 Mar; 132(10):104505. PubMed ID: 20232969 [TBL] [Abstract][Full Text] [Related]
7. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Joung IS; Cheatham TE J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145 [TBL] [Abstract][Full Text] [Related]
8. Ion solvation thermodynamics from simulation with a polarizable force field. Grossfield A; Ren P; Ponder JW J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617 [TBL] [Abstract][Full Text] [Related]
9. Density functional study of ion hydration for the alkali metal ions (Li+, Na+, K+) and the halide ions (F-, Br-, Cl-). Krekeler C; Hess B; Delle Site L J Chem Phys; 2006 Aug; 125(5):054305. PubMed ID: 16942211 [TBL] [Abstract][Full Text] [Related]
10. Gaussian-Charge Polarizable and Nonpolarizable Models for CO2. Jiang H; Moultos OA; Economou IG; Panagiotopoulos AZ J Phys Chem B; 2016 Feb; 120(5):984-94. PubMed ID: 26788614 [TBL] [Abstract][Full Text] [Related]
11. Clusters of classical water models. Kiss PT; Baranyai A J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683 [TBL] [Abstract][Full Text] [Related]
12. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations. Lev B; Roux B; Noskov SY J Chem Theory Comput; 2013 Sep; 9(9):4165-75. PubMed ID: 26592407 [TBL] [Abstract][Full Text] [Related]
13. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen-Bonding Polarizable Intermolecular Potential Model for Water. Jiang H; Moultos OA; Economou IG; Panagiotopoulos AZ J Phys Chem B; 2016 Dec; 120(48):12358-12370. PubMed ID: 27807969 [TBL] [Abstract][Full Text] [Related]
15. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies. Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453 [TBL] [Abstract][Full Text] [Related]
16. A new polarizable force field for alkali and halide ions. Kiss PT; Baranyai A J Chem Phys; 2014 Sep; 141(11):114501. PubMed ID: 25240358 [TBL] [Abstract][Full Text] [Related]
17. Polarizability effects in molecular dynamics simulations of the graphene-water interface. Ho TA; Striolo A J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108 [TBL] [Abstract][Full Text] [Related]
18. Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator. Lin FY; Lopes PEM; Harder E; Roux B; MacKerell AD J Chem Inf Model; 2018 May; 58(5):993-1004. PubMed ID: 29624370 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic polarization effects and hydrophobic hydration in ethanol-water solutions from molecular dynamics simulations. Zhong Y; Patel S J Phys Chem B; 2009 Jan; 113(3):767-78. PubMed ID: 19115819 [TBL] [Abstract][Full Text] [Related]
20. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes. König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]