These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 25514094)
1. The fate of microcystins in the environment and challenges for monitoring. Schmidt JR; Wilhelm SW; Boyer GL Toxins (Basel); 2014 Dec; 6(12):3354-87. PubMed ID: 25514094 [TBL] [Abstract][Full Text] [Related]
2. Contribution of sediments in the removal of microcystin-LR from water. Song H; Reichwaldt ES; Ghadouani A Toxicon; 2014 Jun; 83():84-90. PubMed ID: 24631598 [TBL] [Abstract][Full Text] [Related]
3. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions. Chen W; Song L; Peng L; Wan N; Zhang X; Gan N Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208 [TBL] [Abstract][Full Text] [Related]
4. The biodegradation of microcystins in temperate freshwater bodies with previous cyanobacterial history. Dziga D; Maksylewicz A; Maroszek M; Budzyńska A; Napiorkowska-Krzebietke A; Toporowska M; Grabowska M; Kozak A; Rosińska J; Meriluoto J Ecotoxicol Environ Saf; 2017 Nov; 145():420-430. PubMed ID: 28772230 [TBL] [Abstract][Full Text] [Related]
5. Microbial degradation of microcystins. Dziga D; Wasylewski M; Wladyka B; Nybom S; Meriluoto J Chem Res Toxicol; 2013 Jun; 26(6):841-52. PubMed ID: 23621464 [TBL] [Abstract][Full Text] [Related]
6. Bacterial degradation of microcystins and nodularin. Imanishi S; Kato H; Mizuno M; Tsuji K; Harada K Chem Res Toxicol; 2005 Mar; 18(3):591-8. PubMed ID: 15777098 [TBL] [Abstract][Full Text] [Related]
7. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. Sangolkar LN; Maske SS; Chakrabarti T Water Res; 2006 Nov; 40(19):3485-96. PubMed ID: 17014889 [TBL] [Abstract][Full Text] [Related]
8. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry. Neffling MR; Lance E; Meriluoto J Environ Pollut; 2010 Mar; 158(3):948-52. PubMed ID: 19910094 [TBL] [Abstract][Full Text] [Related]
9. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Puddick J; Prinsep MR; Wood SA; Kaufononga SA; Cary SC; Hamilton DP Mar Drugs; 2014 Nov; 12(11):5372-95. PubMed ID: 25402827 [TBL] [Abstract][Full Text] [Related]
10. Production of a bisdemethylated microcystin variant by Planktothrix rubescens. Zoschke K; Schübel M; Börnick H; Worch E Toxicon; 2017 Oct; 137():95-98. PubMed ID: 28668563 [TBL] [Abstract][Full Text] [Related]
11. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Microcystins in Blue-Green Algal Dietary Supplements. Parker CH; Stutts WL; DeGrasse SL J Agric Food Chem; 2015 Dec; 63(47):10303-12. PubMed ID: 26466789 [TBL] [Abstract][Full Text] [Related]
12. Account: characterization and identification of microcystins by mass spectrometry. Bortoli S; Volmer DA Eur J Mass Spectrom (Chichester); 2014; 20(1):1-19. PubMed ID: 24881451 [TBL] [Abstract][Full Text] [Related]
13. Further characterization of glycine-containing microcystins from the McMurdo dry Valleys of Antarctica. Puddick J; Prinsep MR; Wood SA; Cary SC; Hamilton DP; Holland PT Toxins (Basel); 2015 Feb; 7(2):493-515. PubMed ID: 25675414 [TBL] [Abstract][Full Text] [Related]
15. Liquid chromatography/negative electrospray ionization ion trap MS(2) mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs. Rodrigues MA; Reis MP; Mateus MC Toxicon; 2013 Nov; 74():8-18. PubMed ID: 23896533 [TBL] [Abstract][Full Text] [Related]
16. Structural characterization of microcystins by LC/MS/MS under ion trap conditions. Mayumi T; Kato H; Imanishi S; Kawasaki Y; Hasegawa M; Harada K J Antibiot (Tokyo); 2006 Nov; 59(11):710-9. PubMed ID: 17256470 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. Rodriguez I; Fraga M; Alfonso A; Guillebault D; Medlin L; Baudart J; Jacob P; Helmi K; Meyer T; Breitenbach U; Holden NM; Boots B; Spurio R; Cimarelli L; Mancini L; Marcheggiani S; Albay M; Akcaalan R; Köker L; Botana LM Environ Toxicol Chem; 2017 Mar; 36(3):645-654. PubMed ID: 27505279 [TBL] [Abstract][Full Text] [Related]
18. On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry for the analysis of cyanotoxins in algal blooms. Fayad PB; Roy-Lachapelle A; Duy SV; Prévost M; Sauvé S Toxicon; 2015 Dec; 108():167-75. PubMed ID: 26494036 [TBL] [Abstract][Full Text] [Related]
19. Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Mankiewicz-Boczek J; Karwaciak I; Ratajewski M; Gągała I; Jurczak T; Zalewski M; Pułaski Ł Aquat Toxicol; 2015 Nov; 168():1-10. PubMed ID: 26398929 [TBL] [Abstract][Full Text] [Related]
20. Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Ibelings BW; Bruning K; de Jonge J; Wolfstein K; Pires LM; Postma J; Burger T Microb Ecol; 2005 May; 49(4):487-500. PubMed ID: 16052377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]