These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25514133)

  • 1. Evaluation of the formation of oxidants and by-products using Pt/Ti, RuO2/Ti, and IrO2/Ti electrodes in the electrochemical process.
    Yoon Y; Cho E; Jung Y; Kwon M; Yoon J; Kang JW
    Environ Technol; 2015; 36(1-4):317-26. PubMed ID: 25514133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.
    Bagastyo AY; Radjenovic J; Mu Y; Rozendal RA; Batstone DJ; Rabaey K
    Water Res; 2011 Oct; 45(16):4951-9. PubMed ID: 21802107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Electrochemical oxidation of ammonia nitrogen wastewater using Ti/RuO2-TiO2-IrO2-SnO2 electrode].
    Xu LL; Shi HC; Chen JL
    Huan Jing Ke Xue; 2007 Sep; 28(9):2009-13. PubMed ID: 17990548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO
    Lin L; Meng X; Li Q; Huang Z; Wang L; Lin K; Chen J; Crittenden J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27924-27934. PubMed ID: 30058039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes.
    Jeong J; Kim C; Yoon J
    Water Res; 2009 Mar; 43(4):895-901. PubMed ID: 19084255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.
    Li XY; Cui YH; Feng YJ; Xie ZM; Gu JD
    Water Res; 2005 May; 39(10):1972-81. PubMed ID: 15882890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxidation of resorcinol for wastewater treatment using Ti/TiO2-RuO2-IrO2 electrode.
    Rajkumar D; Palanivelu K; Mohan N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(10):1997-2010. PubMed ID: 11759910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.
    Radjenovic J; Bagastyo A; Rozendal RA; Mu Y; Keller J; Rabaey K
    Water Res; 2011 Feb; 45(4):1579-86. PubMed ID: 21167547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes.
    Govindaraj M; Muthukumar M; Raju GB
    Environ Technol; 2010 Dec; 31(14):1613-22. PubMed ID: 21275257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetic studies.
    Jung YJ; Baek KW; Oh BS; Kang JW
    Water Res; 2010 Oct; 44(18):5345-55. PubMed ID: 20619871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry study of RuO2/IrO2/TiO2 mixed-oxide electrodes.
    Barison S; Daolio S; Fabrizio M; De Battisti A
    Rapid Commun Mass Spectrom; 2004; 18(3):278-84. PubMed ID: 14755612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt-IrO2 electrode.
    Lei X; Maekawa T
    Bioresour Technol; 2007 Dec; 98(18):3521-5. PubMed ID: 17207618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum conditions for the formation of Al13 polymer and active chlorine in electrolysis process with Ti/RuO2-TiO2 anodes.
    Hu C; Liu H; Qu J
    J Environ Sci (China); 2012; 24(2):297-302. PubMed ID: 22655391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments.
    Wang H; Wang JL
    J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin film trichloroethylene electrochemical sensor.
    Chen MH; Liu CC; Chou TC
    Biosens Bioelectron; 2004 Jul; 20(1):25-32. PubMed ID: 15142573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes.
    Bagastyo AY; Batstone DJ; Rabaey K; Radjenovic J
    Water Res; 2013 Jan; 47(1):242-50. PubMed ID: 23137830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
    Li M; Feng C; Hu W; Zhang Z; Sugiura N
    J Hazard Mater; 2009 Feb; 162(1):455-62. PubMed ID: 18599203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic degradation of bromocresol green wastewater on Ti/SnO
    Bai H; He P; Chen J; Liu K; Lei H; Zhang X; Dong F; Li H
    Water Sci Technol; 2017 Jan; 75(1-2):220-227. PubMed ID: 28067662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent.
    Perea LA; Palma-Goyes RE; Vazquez-Arenas J; Romero-Ibarra I; Ostos C; Torres-Palma RA
    Sci Total Environ; 2019 Jan; 648():377-387. PubMed ID: 30121037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry.
    Miyata M; Ihara I; Yoshid G; Toyod K; Umetsu K
    Water Sci Technol; 2011; 63(3):456-61. PubMed ID: 21278467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.