These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25514192)

  • 1. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.
    Baranov AV; Ushakova EV; Golubkov VV; Litvin AP; Parfenov PS; Fedorov AV; Berwick K
    Langmuir; 2015 Jan; 31(1):506-13. PubMed ID: 25514192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PbI
    Pinna J; Pili E; Mehrabi Koushki R; Gavhane DS; Carlà F; Kooi BJ; Portale G; Loi MA
    ACS Nano; 2024 Jul; 18(29):19124-19136. PubMed ID: 38954751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties.
    Sandeep CS; Azpiroz JM; Evers WH; Boehme SC; Moreels I; Kinge S; Siebbeles LD; Infante I; Houtepen AJ
    ACS Nano; 2014 Nov; 8(11):11499-511. PubMed ID: 25347299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography.
    Liu J; Enomoto K; Takeda K; Inoue D; Pu YJ
    Chem Sci; 2021 Aug; 12(30):10354-10361. PubMed ID: 34377421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots.
    Zhao H; Chaker M; Ma D
    Phys Chem Chem Phys; 2010 Nov; 12(44):14754-61. PubMed ID: 20949145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled electronic states in CdTe quantum dot assemblies fabricated by utilizing chemical bonding between ligands.
    Lee YS; Ito T; Shimura K; Watanabe T; Bu HB; Hyeon-Deuk K; Kim D
    Nanoscale; 2020 Apr; 12(13):7124-7133. PubMed ID: 32191241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercalated synthesis of zinc oxide quantum dots between multilayered organic films: preparation of 2D superlattices in colloidal solutions.
    Wang D; Cao C; Ji F; Zhu H
    J Colloid Interface Sci; 2005 Oct; 290(1):196-200. PubMed ID: 15939428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface.
    El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF
    J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution.
    Ushakova EV; Litvin AP; Parfenov PS; Fedorov AV; Artemyev M; Prudnikau AV; Rukhlenko ID; Baranov AV
    ACS Nano; 2012 Oct; 6(10):8913-21. PubMed ID: 22971234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregated CdS quantum dots: Host of biomolecular ligands.
    Narayanan SS; Pal SK
    J Phys Chem B; 2006 Dec; 110(48):24403-9. PubMed ID: 17134194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined-but-connected quantum solids via controlled ligand displacement.
    Baumgardner WJ; Whitham K; Hanrath T
    Nano Lett; 2013 Jul; 13(7):3225-31. PubMed ID: 23777454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Superlattice of PbS Quantum Dots in Flakes.
    Ermakov VA; Silva Filho JMCD; Bonato LG; Mogili NVV; Montoro FE; Iikawa F; Nogueira AF; Cesar CL; Jiménez-Villar E; Marques FC
    ACS Omega; 2018 Feb; 3(2):2027-2032. PubMed ID: 31458511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.