BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25514192)

  • 1. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.
    Baranov AV; Ushakova EV; Golubkov VV; Litvin AP; Parfenov PS; Fedorov AV; Berwick K
    Langmuir; 2015 Jan; 31(1):506-13. PubMed ID: 25514192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PbI
    Pinna J; Pili E; Mehrabi Koushki R; Gavhane DS; Carlà F; Kooi BJ; Portale G; Loi MA
    ACS Nano; 2024 Jul; ():. PubMed ID: 38954751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties.
    Sandeep CS; Azpiroz JM; Evers WH; Boehme SC; Moreels I; Kinge S; Siebbeles LD; Infante I; Houtepen AJ
    ACS Nano; 2014 Nov; 8(11):11499-511. PubMed ID: 25347299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography.
    Liu J; Enomoto K; Takeda K; Inoue D; Pu YJ
    Chem Sci; 2021 Aug; 12(30):10354-10361. PubMed ID: 34377421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots.
    Zhao H; Chaker M; Ma D
    Phys Chem Chem Phys; 2010 Nov; 12(44):14754-61. PubMed ID: 20949145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled electronic states in CdTe quantum dot assemblies fabricated by utilizing chemical bonding between ligands.
    Lee YS; Ito T; Shimura K; Watanabe T; Bu HB; Hyeon-Deuk K; Kim D
    Nanoscale; 2020 Apr; 12(13):7124-7133. PubMed ID: 32191241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercalated synthesis of zinc oxide quantum dots between multilayered organic films: preparation of 2D superlattices in colloidal solutions.
    Wang D; Cao C; Ji F; Zhu H
    J Colloid Interface Sci; 2005 Oct; 290(1):196-200. PubMed ID: 15939428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface.
    El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF
    J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution.
    Ushakova EV; Litvin AP; Parfenov PS; Fedorov AV; Artemyev M; Prudnikau AV; Rukhlenko ID; Baranov AV
    ACS Nano; 2012 Oct; 6(10):8913-21. PubMed ID: 22971234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregated CdS quantum dots: Host of biomolecular ligands.
    Narayanan SS; Pal SK
    J Phys Chem B; 2006 Dec; 110(48):24403-9. PubMed ID: 17134194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined-but-connected quantum solids via controlled ligand displacement.
    Baumgardner WJ; Whitham K; Hanrath T
    Nano Lett; 2013 Jul; 13(7):3225-31. PubMed ID: 23777454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Superlattice of PbS Quantum Dots in Flakes.
    Ermakov VA; Silva Filho JMCD; Bonato LG; Mogili NVV; Montoro FE; Iikawa F; Nogueira AF; Cesar CL; Jiménez-Villar E; Marques FC
    ACS Omega; 2018 Feb; 3(2):2027-2032. PubMed ID: 31458511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.