These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25514192)

  • 21. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy.
    McArthur EA; Morris-Cohen AJ; Knowles KE; Weiss EA
    J Phys Chem B; 2010 Nov; 114(45):14514-20. PubMed ID: 20507144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of Multiple Exciton Generation and Electron-Phonon Coupling by Interior Nanospace in Hyperstructured Quantum Dot Superlattice.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32080-32088. PubMed ID: 28838230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule.
    Zenkevich E; Stupak A; Göhler C; Krasselt C; von Borczyskowski C
    ACS Nano; 2015 Mar; 9(3):2886-903. PubMed ID: 25703788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots.
    Kim D; Tomita S; Ohshiro K; Watanabe T; Sakai T; Chang IY; Hyeon-Deuk K
    Nano Lett; 2015 Jul; 15(7):4343-7. PubMed ID: 26091186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoluminescence investigation of strictly ordered Ge dots grown on pit-patterned Si substrates.
    Brehm M; Grydlik M; Tayagaki T; Langer G; Schäffler F; Schmidt OG
    Nanotechnology; 2015 Jun; 26(22):225202. PubMed ID: 25969173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates.
    Chen Y; Pan B; Nie T; Chen P; Lu F; Jiang Z; Zhong Z
    Nanotechnology; 2010 Apr; 21(17):175701. PubMed ID: 20357407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emission properties of colloidal quantum dots on polyelectrolyte multilayers.
    Komarala VK; Rakovich YP; Bradley AL; Byrne SJ; Corr SA; Gun'ko YK
    Nanotechnology; 2006 Aug; 17(16):4117-22. PubMed ID: 21727547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching.
    Hu C; Aubert T; Justo Y; Flamee S; Cirillo M; Gassenq A; Drobchak O; Beunis F; Roelkens G; Hens Z
    Nanotechnology; 2014 May; 25(17):175302. PubMed ID: 24722007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal PbS quantum dot stacking kinetics during deposition via printing.
    Chen W; Tang H; Li N; Scheel MA; Xie Y; Li D; Körstgens V; Schwartzkopf M; Roth SV; Wang K; Sun XW; Müller-Buschbaum P
    Nanoscale Horiz; 2020 May; 5(5):880-885. PubMed ID: 32129402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-Dependent Permeability of the Ligand Shell of PbS Quantum Dots Probed by Electron Transfer to Benzoquinone.
    Aruda KO; Bohlmann Kunz M; Tagliazucchi M; Weiss EA
    J Phys Chem Lett; 2015 Jul; 6(14):2841-6. PubMed ID: 26266870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection.
    Bessonov AA; Allen M; Liu Y; Malik S; Bottomley J; Rushton A; Medina-Salazar I; Voutilainen M; Kallioinen S; Colli A; Bower C; Andrew P; Ryhänen T
    ACS Nano; 2017 Jun; 11(6):5547-5557. PubMed ID: 28558187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots.
    Kim S; Noh J; Choi H; Ha H; Song JH; Shim HC; Jang J; Beard MC; Jeong S
    J Phys Chem Lett; 2014 Nov; 5(22):4002-7. PubMed ID: 26276485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots.
    Kim HS; Lee MH; Jeong NC; Lee SM; Rhee BK; Yoon KB
    J Am Chem Soc; 2006 Nov; 128(47):15070-1. PubMed ID: 17117841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability.
    Choi H; Ko JH; Kim YH; Jeong S
    J Am Chem Soc; 2013 Apr; 135(14):5278-81. PubMed ID: 23496143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct evidence on the energy transfer of near-infrared emission in PbS quantum dot-doped glass.
    Wang H; Wu G; Qiu J; Dong G
    Opt Express; 2015 Jun; 23(13):16723-9. PubMed ID: 26191684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum chemistry of quantum dots: effects of ligands and oxidation.
    Inerbaev TM; Masunov AE; Khondaker SI; Dobrinescu A; Plamadă AV; Kawazoe Y
    J Chem Phys; 2009 Jul; 131(4):044106. PubMed ID: 19655836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.
    Savelli G; Stein SS; Bernard-Granger G; Faucherand P; Montès L; Dilhaire S; Pernot G
    Nanotechnology; 2015 Jul; 26(27):275605. PubMed ID: 26086207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids.
    Xu F; Gerlein LF; Ma X; Haughn CR; Doty MF; Cloutier SG
    Materials (Basel); 2015 Apr; 8(4):1858-1870. PubMed ID: 28788036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.