BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25514194)

  • 1. Multisite accelerometry for sleep and wake classification in children.
    Lamprecht ML; Bradley AP; Tran T; Boynton A; Terrill PI
    Physiol Meas; 2015 Jan; 36(1):133-47. PubMed ID: 25514194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal associations between arousal and body/limb movement in children with suspected obstructed sleep apnoea.
    Lamprecht ML; Bradley AP; Williams G; Terrill PI
    Physiol Meas; 2016 Jan; 37(1):115-27. PubMed ID: 26641104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents.
    Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN
    J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of movements during restless sleep in children: a pilot study.
    Lamprecht ML; Terrill PI; Parsley CL; Bradley AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():274-7. PubMed ID: 25569950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a continuous multisite accelerometry system for studying movements during sleep.
    Terrill PI; Mason DG; Wilson SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6150-3. PubMed ID: 21097146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device.
    Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E
    PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.
    Pallin M; O'Hare E; Zaffaroni A; Boyle P; Fagan C; Kent B; Heneghan C; de Chazal P; McNicholas WT
    J Sleep Res; 2014 Aug; 23(4):475-84. PubMed ID: 24495222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification.
    Aktaruzzaman M; Rivolta MW; Karmacharya R; Scarabottolo N; Pugnetti L; Garegnani M; Bovi G; Scalera G; Ferrarin M; Sassi R
    Comput Biol Med; 2017 Oct; 89():212-221. PubMed ID: 28841459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating actigraphy as a measure of sleep for preschool children.
    Bélanger MÈ; Bernier A; Paquet J; Simard V; Carrier J
    J Clin Sleep Med; 2013 Jul; 9(7):701-6. PubMed ID: 23853565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring leg movements during sleep using accelerometry: comparison with EMG and piezo-electric scored events.
    Terrill PI; Leong M; Barton K; Freakley C; Downey C; Vanniekerk M; Jorgensen G; Douglas J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6862-5. PubMed ID: 24111321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of sleep-wake classification using electroencephalogram and wrist-worn multi-modal sensor data.
    Sano A; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():930-3. PubMed ID: 25570112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep/wake measurement using a non-contact biomotion sensor.
    De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT
    J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep.
    Scatena M; Dittoni S; Maviglia R; Frusciante R; Testani E; Vollono C; Losurdo A; Colicchio S; Gnoni V; Labriola C; Farina B; Pennisi MA; Della Marca G
    Clin Neurophysiol; 2012 Feb; 123(2):318-23. PubMed ID: 21873109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of 7 versus 14 days wrist actigraphy monitoring in a sleep disorders clinic population.
    Briscoe S; Hardy E; Pengo MF; Kosky C; Williams AJ; Hart N; Steier J
    Chronobiol Int; 2014 Apr; 31(3):356-62. PubMed ID: 24304408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How accurately does wrist actigraphy identify the states of sleep and wakefulness?
    Pollak CP; Tryon WW; Nagaraja H; Dzwonczyk R
    Sleep; 2001 Dec; 24(8):957-65. PubMed ID: 11766166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-constraining sleep/wake monitoring system using bed actigraphy.
    Choi BH; Seo JW; Choi JM; Shin HB; Lee JY; Jeong DU; Park KS
    Med Biol Eng Comput; 2007 Jan; 45(1):107-14. PubMed ID: 17146691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A balanced sleep/wakefulness classification method based on actigraphic data in adolescents.
    Orellana G; Held CM; Estevez PA; Perez CA; Reyes S; Algarin C; Peirano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4188-91. PubMed ID: 25570915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B
    J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.