These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25514194)
1. Multisite accelerometry for sleep and wake classification in children. Lamprecht ML; Bradley AP; Tran T; Boynton A; Terrill PI Physiol Meas; 2015 Jan; 36(1):133-47. PubMed ID: 25514194 [TBL] [Abstract][Full Text] [Related]
2. Temporal associations between arousal and body/limb movement in children with suspected obstructed sleep apnoea. Lamprecht ML; Bradley AP; Williams G; Terrill PI Physiol Meas; 2016 Jan; 37(1):115-27. PubMed ID: 26641104 [TBL] [Abstract][Full Text] [Related]
3. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies. Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents. Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248 [TBL] [Abstract][Full Text] [Related]
5. Characterization of movements during restless sleep in children: a pilot study. Lamprecht ML; Terrill PI; Parsley CL; Bradley AP Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():274-7. PubMed ID: 25569950 [TBL] [Abstract][Full Text] [Related]
6. Development of a continuous multisite accelerometry system for studying movements during sleep. Terrill PI; Mason DG; Wilson SJ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6150-3. PubMed ID: 21097146 [TBL] [Abstract][Full Text] [Related]
7. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498 [TBL] [Abstract][Full Text] [Related]
8. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea. Pallin M; O'Hare E; Zaffaroni A; Boyle P; Fagan C; Kent B; Heneghan C; de Chazal P; McNicholas WT J Sleep Res; 2014 Aug; 23(4):475-84. PubMed ID: 24495222 [TBL] [Abstract][Full Text] [Related]
9. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification. Aktaruzzaman M; Rivolta MW; Karmacharya R; Scarabottolo N; Pugnetti L; Garegnani M; Bovi G; Scalera G; Ferrarin M; Sassi R Comput Biol Med; 2017 Oct; 89():212-221. PubMed ID: 28841459 [TBL] [Abstract][Full Text] [Related]
10. Validating actigraphy as a measure of sleep for preschool children. Bélanger MÈ; Bernier A; Paquet J; Simard V; Carrier J J Clin Sleep Med; 2013 Jul; 9(7):701-6. PubMed ID: 23853565 [TBL] [Abstract][Full Text] [Related]
11. Measuring leg movements during sleep using accelerometry: comparison with EMG and piezo-electric scored events. Terrill PI; Leong M; Barton K; Freakley C; Downey C; Vanniekerk M; Jorgensen G; Douglas J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6862-5. PubMed ID: 24111321 [TBL] [Abstract][Full Text] [Related]
12. Comparison of sleep-wake classification using electroencephalogram and wrist-worn multi-modal sensor data. Sano A; Picard RW Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():930-3. PubMed ID: 25570112 [TBL] [Abstract][Full Text] [Related]
13. Sleep/wake measurement using a non-contact biomotion sensor. De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645 [TBL] [Abstract][Full Text] [Related]
14. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep. Scatena M; Dittoni S; Maviglia R; Frusciante R; Testani E; Vollono C; Losurdo A; Colicchio S; Gnoni V; Labriola C; Farina B; Pennisi MA; Della Marca G Clin Neurophysiol; 2012 Feb; 123(2):318-23. PubMed ID: 21873109 [TBL] [Abstract][Full Text] [Related]
15. Comparison of 7 versus 14 days wrist actigraphy monitoring in a sleep disorders clinic population. Briscoe S; Hardy E; Pengo MF; Kosky C; Williams AJ; Hart N; Steier J Chronobiol Int; 2014 Apr; 31(3):356-62. PubMed ID: 24304408 [TBL] [Abstract][Full Text] [Related]
16. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information. Domingues A; Paiva T; Sanches JM IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826 [TBL] [Abstract][Full Text] [Related]
17. How accurately does wrist actigraphy identify the states of sleep and wakefulness? Pollak CP; Tryon WW; Nagaraja H; Dzwonczyk R Sleep; 2001 Dec; 24(8):957-65. PubMed ID: 11766166 [TBL] [Abstract][Full Text] [Related]
18. Non-constraining sleep/wake monitoring system using bed actigraphy. Choi BH; Seo JW; Choi JM; Shin HB; Lee JY; Jeong DU; Park KS Med Biol Eng Comput; 2007 Jan; 45(1):107-14. PubMed ID: 17146691 [TBL] [Abstract][Full Text] [Related]
19. A balanced sleep/wakefulness classification method based on actigraphic data in adolescents. Orellana G; Held CM; Estevez PA; Perez CA; Reyes S; Algarin C; Peirano P Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4188-91. PubMed ID: 25570915 [TBL] [Abstract][Full Text] [Related]
20. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography. Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]