BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

662 related articles for article (PubMed ID: 25514347)

  • 1. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer.
    Cao D; Tian S; Huang H; Chen J; Pan S
    Mol Pharm; 2015 Jan; 12(1):240-52. PubMed ID: 25514347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol).
    Liu L; Zheng M; Librizzi D; Renette T; Merkel OM; Kissel T
    Mol Pharm; 2016 Jan; 13(1):134-43. PubMed ID: 26641134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery.
    Liu L; Zheng M; Renette T; Kissel T
    Bioconjug Chem; 2012 Jun; 23(6):1211-20. PubMed ID: 22548308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity.
    Cheng H; Zhu JL; Zeng X; Jing Y; Zhang XZ; Zhuo RX
    Bioconjug Chem; 2009 Mar; 20(3):481-7. PubMed ID: 19191579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector.
    Oishi M; Kataoka K; Nagasaki Y
    Bioconjug Chem; 2006; 17(3):677-88. PubMed ID: 16704205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells.
    Dong DW; Xiang B; Gao W; Yang ZZ; Li JQ; Qi XR
    Biomaterials; 2013 Jul; 34(20):4849-59. PubMed ID: 23541420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.
    Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW
    Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted minicircle DNA delivery using folate-poly(ethylene glycol)-polyethylenimine as non-viral carrier.
    Zhang C; Gao S; Jiang W; Lin S; Du F; Li Z; Huang W
    Biomaterials; 2010 Aug; 31(23):6075-86. PubMed ID: 20488533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery.
    Dai J; Zou S; Pei Y; Cheng D; Ai H; Shuai X
    Biomaterials; 2011 Feb; 32(6):1694-705. PubMed ID: 21093048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor-mediated gene delivery by folate-poly(ethylene glycol)-grafted-trimethyl chitosan in vitro.
    Zheng Y; Song X; He G; Cai Z; Zhou Y; Yu B; Xu J; Wei Y; Hou S
    J Drug Target; 2011 Sep; 19(8):647-56. PubMed ID: 20964597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis.
    Liu C; Yu W; Chen Z; Zhang J; Zhang N
    J Control Release; 2011 Apr; 151(2):162-75. PubMed ID: 21376765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folic Acid/Peptides Modified PLGA-PEI-PEG Polymeric Vectors as Efficient Gene Delivery Vehicles: Synthesis, Characterization and Their Biological Performance.
    Liu C; Xie Y; Li X; Yao X; Wang X; Wang M; Li Z; Cao F
    Mol Biotechnol; 2021 Jan; 63(1):63-79. PubMed ID: 33141343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery.
    Zhao N; Roesler S; Kissel T
    Int J Pharm; 2011 Jun; 411(1-2):197-205. PubMed ID: 21439364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folate-PEG-folate-graft-polyethylenimine-based gene delivery.
    Benns JM; Maheshwari A; Furgeson DY; Mahato RI; Kim SW
    J Drug Target; 2001 Apr; 9(2):123-39. PubMed ID: 11697107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.
    Moore NM; Sheppard CL; Barbour TR; Sakiyama-Elbert SE
    J Gene Med; 2008 Oct; 10(10):1134-49. PubMed ID: 18642401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cell-specific poly(ethylene glycol) derivative with a wheat-like structure for efficient gene delivery.
    Li H; Sun X; Zhao D; Zhang Z
    Mol Pharm; 2012 Nov; 9(11):2974-85. PubMed ID: 22957964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: effects of PEG molecular weight and PEGylation degree.
    Zhang X; Pan SR; Hu HM; Wu GF; Feng M; Zhang W; Luo X
    J Biomed Mater Res A; 2008 Mar; 84(3):795-804. PubMed ID: 17635020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine.
    Benns JM; Mahato RI; Kim SW
    J Control Release; 2002 Feb; 79(1-3):255-69. PubMed ID: 11853936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cyclodextrin modification on cellular uptake and transfection efficiency of polyplexes.
    Li W; Chen L; Huang Z; Wu X; Zhang Y; Hu Q; Wang Y
    Org Biomol Chem; 2011 Oct; 9(22):7799-806. PubMed ID: 21952620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.