BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25514355)

  • 1. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.
    Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S
    Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I
    J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of formate oxidation by metal-dependent formate dehydrogenases.
    Mota CS; Rivas MG; Brondino CD; Moura I; Moura JJ; González PJ; Cerqueira NM
    J Biol Inorg Chem; 2011 Dec; 16(8):1255-68. PubMed ID: 21773834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
    Moura JJ; Brondino CD; Trincão J; Romão MJ
    J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus.
    Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a noncanonical menaquinone-linked formate dehydrogenase.
    Arias-Cartín R; Uzel A; Seduk F; Gerbaud G; Pierrel F; Broc M; Lebrun R; Guigliarelli B; Magalon A; Grimaldi S; Walburger A
    J Biol Chem; 2022 Feb; 298(2):101384. PubMed ID: 34748728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.
    Gladyshev VN; Khangulov SV; Axley MJ; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7708-11. PubMed ID: 8052647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.
    Boyington JC; Gladyshev VN; Khangulov SV; Stadtman TC; Sun PD
    Science; 1997 Feb; 275(5304):1305-8. PubMed ID: 9036855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase.
    Radon C; Mittelstädt G; Duffus BR; Bürger J; Hartmann T; Mielke T; Teutloff C; Leimkühler S; Wendler P
    Nat Commun; 2020 Apr; 11(1):1912. PubMed ID: 32313256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO
    Shiekh BA; Kaur D; Kumar S
    Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive activation of CO
    Niks D; Hille R
    Methods Enzymol; 2018; 613():277-295. PubMed ID: 30509470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function relationship of formate dehydrogenases: an overview of recent progress.
    Kobayashi A; Taketa M; Sowa K; Kano K; Higuchi Y; Ogata H
    IUCrJ; 2023 Sep; 10(Pt 5):544-554. PubMed ID: 37668215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.