These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25514399)

  • 1. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.
    Zhang L; Zhu X; Kashima H; Li J; Ye DD; Liao Q; Regan JM
    Bioresour Technol; 2015 Mar; 179():26-34. PubMed ID: 25514399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-recirculation electrolyte system for unbuffered microbial fuel cells with an aerated cathode.
    Zhang L; Zhu X; Li J; Fu Q; Liao Q; Li Y; Li Y
    Bioresour Technol; 2017 Oct; 241():1173-1177. PubMed ID: 28599920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2241-8. PubMed ID: 22314518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity generation using membrane and salt bridge microbial fuel cells.
    Min B; Cheng S; Logan BE
    Water Res; 2005 May; 39(9):1675-86. PubMed ID: 15899266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.
    Ren Y; Chen J; Shi Y; Li X; Yang N; Wang X
    Bioresour Technol; 2017 Nov; 244(Pt 1):1183-1187. PubMed ID: 28838788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.
    Ren Y; Chen J; Li X; Yang N; Wang X
    Bioelectrochemistry; 2018 Apr; 120():145-149. PubMed ID: 29268164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.
    Yang N; Ren Y; Li X; Wang X
    Bioelectrochemistry; 2017 Jun; 115():41-46. PubMed ID: 28254576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber.
    Lee M; Kakarla R; Min B
    Bioprocess Biosyst Eng; 2019 Aug; 42(8):1247-1254. PubMed ID: 31030377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.
    Jacobson KS; Kelly PT; He Z
    Water Environ Res; 2015 Mar; 87(3):252-7. PubMed ID: 25842536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.
    Hou B; Sun J; Hu YY
    Bioresour Technol; 2011 Mar; 102(6):4433-8. PubMed ID: 21251817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using live algae at the anode of a microbial fuel cell to generate electricity.
    Xu C; Poon K; Choi MM; Wang R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.