These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25514590)

  • 1. Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.
    Salehi-Reyhani A; Gesellchen F; Mampallil D; Wilson R; Reboud J; Ces O; Willison KR; Cooper JM; Klug DR
    Anal Chem; 2015 Feb; 87(4):2161-9. PubMed ID: 25514590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute quantification of protein copy number using a single-molecule-sensitive microarray.
    Burgin E; Salehi-Reyhani A; Barclay M; Brown A; Kaplinsky J; Novakova M; Neil MA; Ces O; Willison KR; Klug DR
    Analyst; 2014 Jul; 139(13):3235-44. PubMed ID: 24676423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic sample preparation: cell lysis and nucleic acid purification.
    Kim J; Johnson M; Hill P; Gale BK
    Integr Biol (Camb); 2009 Oct; 1(10):574-86. PubMed ID: 20023774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.
    Yun SS; Yoon SY; Song MK; Im SH; Kim S; Lee JH; Yang S
    Lab Chip; 2010 Jun; 10(11):1442-6. PubMed ID: 20480109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially selecting a single cell for lysis using light-induced electric fields.
    Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL
    Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.
    Salehi-Reyhani A; Kaplinsky J; Burgin E; Novakova M; deMello AJ; Templer RH; Parker P; Neil MA; Ces O; French P; Willison KR; Klug D
    Lab Chip; 2011 Apr; 11(7):1256-61. PubMed ID: 21347466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling advantages and constraints in miniaturized capture assays for single cell protein analysis.
    Salehi-Reyhani A; Sharma S; Burgin E; Barclay M; Cass A; Neil MA; Ces O; Willison KR; Klug DR; Brown A; Novakova M
    Lab Chip; 2013 Jun; 13(11):2066-74. PubMed ID: 23592024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels.
    Lu H; Mutafopulos K; Heyman JA; Spink P; Shen L; Wang C; Franke T; Weitz DA
    Lab Chip; 2019 Dec; 19(24):4064-4070. PubMed ID: 31690904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis.
    Taller D; Richards K; Slouka Z; Senapati S; Hill R; Go DB; Chang HC
    Lab Chip; 2015 Apr; 15(7):1656-66. PubMed ID: 25690152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.
    Behrens J; Langelier S; Rezk AR; Lindner G; Yeo LY; Friend JR
    Lab Chip; 2015 Jan; 15(1):43-6. PubMed ID: 25343424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell lysis methods for high-throughput screening or miniaturized assays.
    Lin Z; Cai Z
    Biotechnol J; 2009 Feb; 4(2):210-5. PubMed ID: 19226554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crossing microfluidic streamlines to lyse, label and wash cells.
    Morton KJ; Loutherback K; Inglis DW; Tsui OK; Sturm JC; Chou SY; Austin RH
    Lab Chip; 2008 Sep; 8(9):1448-53. PubMed ID: 18818798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microfluidic cell culture and lysis on a chip.
    Nevill JT; Cooper R; Dueck M; Breslauer DN; Lee LP
    Lab Chip; 2007 Dec; 7(12):1689-95. PubMed ID: 18030388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples.
    Siegrist J; Gorkin R; Bastien M; Stewart G; Peytavi R; Kido H; Bergeron M; Madou M
    Lab Chip; 2010 Feb; 10(3):363-71. PubMed ID: 20091009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction.
    Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM
    Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I.
    Lee W; Jung J; Hahn YK; Kim SK; Lee Y; Lee J; Lee TH; Park JY; Seo H; Lee JN; Oh JH; Choi YS; Lee SS
    Analyst; 2013 May; 138(9):2558-66. PubMed ID: 23478433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.