These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25514590)

  • 21. Standing surface acoustic wave (SSAW)-based cell washing.
    Li S; Ding X; Mao Z; Chen Y; Nama N; Guo F; Li P; Wang L; Cameron CE; Huang TJ
    Lab Chip; 2015 Jan; 15(1):331-8. PubMed ID: 25372273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations.
    Zhang H; Yang X; Wang K; Tan W; Li H; Zuo X; Wen J
    Biosens Bioelectron; 2008 Feb; 23(7):945-51. PubMed ID: 17983740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange.
    Toyama K; Yamada M; Seki M
    Biomed Microdevices; 2012 Aug; 14(4):751-7. PubMed ID: 22544390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAWs) in droplet-based microfluidics.
    Bussonnière A; Miron Y; Baudoin M; Bou Matar O; Grandbois M; Charette P; Renaudin A
    Lab Chip; 2014 Sep; 14(18):3556-63. PubMed ID: 25029952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
    Rezk AR; Qi A; Friend JR; Li WH; Yeo LY
    Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection.
    Wang JH; Cheng L; Wang CH; Ling WS; Wang SW; Lee GB
    Biosens Bioelectron; 2013 Mar; 41():484-91. PubMed ID: 23083906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wireless induction heating in a microfluidic device for cell lysis.
    Baek SK; Min J; Park JH
    Lab Chip; 2010 Apr; 10(7):909-17. PubMed ID: 20379569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive single-molecule protein quantification and protein complex detection in a microarray format.
    Tessler LA; Mitra RD
    Proteomics; 2011 Dec; 11(24):4731-5. PubMed ID: 22038904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic filtration system to isolate extracellular vesicles from blood.
    Davies RT; Kim J; Jang SC; Choi EJ; Gho YS; Park J
    Lab Chip; 2012 Dec; 12(24):5202-10. PubMed ID: 23111789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planar chip device for PCR and hybridization with surface acoustic wave pump.
    Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A
    Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection.
    Kühnemund M; Witters D; Nilsson M; Lammertyn J
    Lab Chip; 2014 Aug; 14(16):2983-92. PubMed ID: 24934991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An all-in-one microfluidic device for parallel DNA extraction and gene analysis.
    Zhang Y; Park S; Yang S; Wang TH
    Biomed Microdevices; 2010 Dec; 12(6):1043-9. PubMed ID: 20632111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).
    Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O
    Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device.
    Liu Y; Wang W; Hu W; Lu Z; Zhou X; Li CM
    Biomed Microdevices; 2011 Aug; 13(4):769-77. PubMed ID: 21547537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.