BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25515583)

  • 1. Targeting the fibronectin type III repeats in tenascin-C inhibits epithelial-mesenchymal transition in the context of posterior capsular opacification.
    Tiwari A; Ram J; Luthra-Guptasarma M
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):272-83. PubMed ID: 25515583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of Smad2 and Smad3 in transforming growth factor-β-induced posterior capsular opacification of human lens epithelial cells.
    Li H; Yuan X; Li J; Tang X
    Curr Eye Res; 2015 Apr; 40(4):386-97. PubMed ID: 24911914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation.
    de Iongh RU; Wederell E; Lovicu FJ; McAvoy JW
    Cells Tissues Organs; 2005; 179(1-2):43-55. PubMed ID: 15942192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amelioration of collagen antibody induced arthritis in mice by an antibody directed against the fibronectin type III repeats of tenascin-C: Targeting fibronectin type III repeats of tenascin-C in rheumatoid arthritis.
    Mehta BB; Tiwari A; Sharma S; Shukla A; Sharma M; Vasishta RK; Sen RK; Sharma A; Luthra-Guptasarma M
    Int Immunopharmacol; 2018 May; 58():15-23. PubMed ID: 29529488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSP90 as a novel therapeutic target for posterior capsule opacification.
    Li J; Xue W; Wang X; Huang W; Wang XX; Li H; Cui X; Li M; Mu H; Ren Y; Zhang F; Hu Y
    Exp Eye Res; 2019 Dec; 189():107821. PubMed ID: 31589841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of SRC kinases signals induction of posterior capsule opacification.
    Walker JL; Wolff IM; Zhang L; Menko AS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2214-23. PubMed ID: 17460282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro model of posterior capsular opacity: SPARC and TGF-beta2 minimize epithelial-to-mesenchymal transition in lens epithelium.
    Gotoh N; Perdue NR; Matsushima H; Sage EH; Yan Q; Clark JI
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4679-87. PubMed ID: 17898292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNA-181a inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells.
    Dong N; Tang X; Xu B
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):993-1001. PubMed ID: 25626972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1.
    Han R; Hao P; Wang L; Li J; Shui S; Wang Y; Ying M; Liu J; Tang X; Li X
    Exp Eye Res; 2019 Aug; 185():107684. PubMed ID: 31158382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single chain variable fragment antibody (Tn 64) cognate to fibronectin type III repeats promotes corneal wound healing by inhibiting fibrosis.
    Shukla A; Suresh V; Gupta PC; Sharma M; Saikia UN; Ram J; Luthra-Guptasarma M
    Int Immunopharmacol; 2024 May; 133():112029. PubMed ID: 38640715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway.
    Wang L; Tian Y; Shang Z; Zhang B; Hua X; Yuan X
    Exp Eye Res; 2021 Nov; 212():108763. PubMed ID: 34517004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dickkopf-1 inhibits Wnt3a-induced migration and epithelial-mesenchymal transition of human lens epithelial cells.
    Liu T; Zhang L; Wang Y; Zhang H; Li L; Bao X
    Exp Eye Res; 2017 Aug; 161():43-51. PubMed ID: 28587752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERK1/2 signaling is required for the initiation but not progression of TGFβ-induced lens epithelial to mesenchymal transition (EMT).
    Wojciechowski MC; Mahmutovic L; Shu DY; Lovicu FJ
    Exp Eye Res; 2017 Jun; 159():98-113. PubMed ID: 28365272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of αV integrins in lens EMT and posterior capsular opacification.
    Mamuya FA; Wang Y; Roop VH; Scheiblin DA; Zajac JC; Duncan MK
    J Cell Mol Med; 2014 Apr; 18(4):656-70. PubMed ID: 24495224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4.
    Wang Y; Li W; Zang X; Chen N; Liu T; Tsonis PA; Huang Y
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):323-32. PubMed ID: 23221074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Interleukin-6 on posterior capsular opacification.
    Ma B; Yang L; Jing R; Liu J; Quan Y; Hui Q; Li J; Qin L; Pei C
    Exp Eye Res; 2018 Jul; 172():94-103. PubMed ID: 29617629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FILIP1L-mediated cell apoptosis, epithelial-mesenchymal transition and extracellular matrix synthesis aggravate posterior capsular opacification.
    Jing R; Hu C; Qi T; Yue J; Wang G; Zhang M; Wen C; Pei C; Ma B
    Life Sci; 2021 Dec; 286():120061. PubMed ID: 34666037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of posterior capsular opacification.
    Nibourg LM; Gelens E; Kuijer R; Hooymans JM; van Kooten TG; Koopmans SA
    Exp Eye Res; 2015 Jul; 136():100-15. PubMed ID: 25783492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate oxidative stress promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways.
    Chen X; Yan H; Chen Y; Li G; Bin Y; Zhou X
    Mol Cell Biochem; 2021 Mar; 476(3):1631-1642. PubMed ID: 33417163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I collagen accelerates the spreading of lens epithelial cells through the expression and activation of matrix metalloproteinases.
    Shimada A; Miyata Y; Kosano H
    Curr Eye Res; 2014 May; 39(5):460-71. PubMed ID: 24400880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.