BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25515753)

  • 1. Membrane-targeted self-assembling cyclic peptide nanotubes.
    Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR
    Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study.
    Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Proton Transport in Giant Vesicles through Cyclic Peptide-Polymer Conjugate Nanotube Transmembrane Ion Channels.
    Binfield JG; Brendel JC; Cameron NR; Eissa AM; Perrier S
    Macromol Rapid Commun; 2018 Oct; 39(19):e1700831. PubMed ID: 29450934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control.
    Calvelo M; Granja JR; Garcia-Fandino R
    Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion channel models based on self-assembling cyclic peptide nanotubes.
    Montenegro J; Ghadiri MR; Granja JR
    Acc Chem Res; 2013 Dec; 46(12):2955-65. PubMed ID: 23898935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on α-Residues and Cyclic δ-Amino Acids: A Computational Study.
    Blanco-González A; Calvelo M; Garrido PF; Amorín M; Granja JR; Piñeiro Á; Garcia-Fandino R
    Front Chem; 2021; 9():704160. PubMed ID: 34386480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus.
    Barbosa SC; Nobre TM; Volpati D; Ciancaglini P; Cilli EM; Lorenzón EN; Oliveira ON
    Colloids Surf B Biointerfaces; 2016 Dec; 148():453-459. PubMed ID: 27665378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes.
    González-Freire E; Novelli F; Pérez-Estévez A; Seoane R; Amorín M; Granja JR
    Chemistry; 2021 Feb; 27(9):3029-3038. PubMed ID: 32986280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight of Transmembrane Processes of Self-Assembling Nanotubes Based on a Cyclic Peptide Using Coarse Grained Molecular Dynamics Simulation.
    Fu Y; Yan T; Xu X
    J Phys Chem B; 2017 Sep; 121(38):9006-9012. PubMed ID: 28872323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial transmembrane ion channels from self-assembling peptide nanotubes.
    Ghadiri MR; Granja JR; Buehler LK
    Nature; 1994 May; 369(6478):301-4. PubMed ID: 7514275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes.
    Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R
    ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of ion transport in a peptide nanotube.
    Dehez F; Tarek M; Chipot C
    J Phys Chem B; 2007 Sep; 111(36):10633-5. PubMed ID: 17705530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-peptide-nanotube bundle formation by self-assembling of cyclic tetra-β-peptide using G-quartet motif.
    Ishihara Y; Kimura S
    Biopolymers; 2013 Apr; 100(2):141-7. PubMed ID: 23616097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes.
    Carvajal-Diaz JA; Cagin T
    J Phys Chem B; 2016 Aug; 120(32):7872-9. PubMed ID: 27448165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.
    Ruiz L; Benjamin A; Sullivan M; Keten S
    J Phys Chem Lett; 2015 May; 6(9):1514-20. PubMed ID: 26263305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies.
    Sánchez-Quesada J; Isler MP; Ghadiri MR
    J Am Chem Soc; 2002 Aug; 124(34):10004-5. PubMed ID: 12188661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Chem Phys; 2015 Jul; 143(1):015101. PubMed ID: 26156492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.