These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25515880)

  • 1. Molecular self-assembly: Searching sequence space.
    Gazit E
    Nat Chem; 2015 Jan; 7(1):14-5. PubMed ID: 25515880
    [No Abstract]   [Full Text] [Related]  

  • 2. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrapeptidic molecular hydrogels: self-assembly and co-aggregation with amyloid fragment Aβ1-40.
    Tena-Solsona M; Miravet JF; Escuder B
    Chemistry; 2014 Jan; 20(4):1023-31. PubMed ID: 24338754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis.
    Toledano S; Williams RJ; Jayawarna V; Ulijn RV
    J Am Chem Soc; 2006 Feb; 128(4):1070-1. PubMed ID: 16433511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host-guest interaction.
    Chu CW; Ravoo BJ
    Chem Commun (Camb); 2017 Nov; 53(92):12450-12453. PubMed ID: 29099528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of nanostructured tripeptide gels by directional ultrasonication.
    Pappas CG; Frederix PW; Mutasa T; Fleming S; Abul-Haija YM; Kelly SM; Gachagan A; Kalafatovic D; Trevino J; Ulijn RV; Bai S
    Chem Commun (Camb); 2015 May; 51(40):8465-8. PubMed ID: 25891849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Environment-Differentiated Self-Assembly of Nanofibers.
    Zheng Z; Chen P; Xie M; Wu C; Luo Y; Wang W; Jiang J; Liang G
    J Am Chem Soc; 2016 Sep; 138(35):11128-31. PubMed ID: 27532322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart hydrogels from laterally-grafted peptide assembly.
    Li W; Park IS; Kang SK; Lee M
    Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators.
    Adams DJ
    Macromol Biosci; 2011 Feb; 11(2):160-73. PubMed ID: 21080382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tripeptide self-assembled hydrogels: unexpected twists of chirality.
    Marchesan S; Easton CD; Kushkaki F; Waddington L; Hartley PG
    Chem Commun (Camb); 2012 Feb; 48(16):2195-7. PubMed ID: 22159641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials.
    King PJ; Giovanna Lizio M; Booth A; Collins RF; Gough JE; Miller AF; Webb SJ
    Soft Matter; 2016 Feb; 12(6):1915-23. PubMed ID: 26702608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing neutral metallophilic hydrogels from di- and tripeptides.
    Odriozola I; Casuso P; Loinaz I; Cabañero G; Grande HJ
    Org Biomol Chem; 2011 Jul; 9(14):5059-61. PubMed ID: 21670805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels.
    Guilbaud JB; Rochas C; Miller AF; Saiani A
    Biomacromolecules; 2013 May; 14(5):1403-11. PubMed ID: 23506527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial.
    Vargiu AV; Iglesias D; Styan KE; Waddington LJ; Easton CD; Marchesan S
    Chem Commun (Camb); 2016 May; 52(35):5912-5. PubMed ID: 26998534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the thermosensitive properties of hybrid collagen peptide-polymer hydrogels.
    Rubert Pérez CM; Rank LA; Chmielewski J
    Chem Commun (Camb); 2014 Aug; 50(60):8174-6. PubMed ID: 24926620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-triggered and cross-linked self-assembling nanofibrous hydrogels.
    Kumar VA; Shi S; Wang BK; Li IC; Jalan AA; Sarkar B; Wickremasinghe NC; Hartgerink JD
    J Am Chem Soc; 2015 Apr; 137(14):4823-30. PubMed ID: 25831137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-ion-mediated self-assembly of forky peptides for prostate cancer-specific drug delivery.
    Tao M; Xu K; He S; Li H; Zhang L; Luo X; Zhong W
    Chem Commun (Camb); 2018 May; 54(37):4673-4676. PubMed ID: 29675529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.