BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 25515887)

  • 1. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure.
    Sahoo JK; Nazareth C; VandenBerg MA; Webber MJ
    Biomater Sci; 2017 Jul; 5(8):1526-1530. PubMed ID: 28518205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels.
    Marchesan S; Waddington L; Easton CD; Winkler DA; Goodall L; Forsythe J; Hartley PG
    Nanoscale; 2012 Nov; 4(21):6752-60. PubMed ID: 22955637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide.
    Guy MM; Voyer N
    Biophys Chem; 2012 Apr; 163-164():1-10. PubMed ID: 22386803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates.
    Yeh MY; Huang CT; Lai TS; Chen FY; Chu NT; Tseng DT; Hung SC; Lin HC
    Langmuir; 2016 Aug; 32(30):7630-8. PubMed ID: 27385634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation of formal hydrogen-bonding networks within electronically delocalized π-conjugated oligopeptide nanostructures.
    Wall BD; Zhou Y; Mei S; Ardoña HA; Ferguson AL; Tovar JD
    Langmuir; 2014 Sep; 30(38):11375-85. PubMed ID: 25181015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides.
    Xing Q; Zhang J; Xie Y; Wang Y; Qi W; Rao H; Su R; He Z
    ACS Nano; 2018 Dec; 12(12):12305-12314. PubMed ID: 30452865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!
    Iglesias D; Melle-Franco M; Kurbasic M; Melchionna M; Abrami M; Grassi M; Prato M; Marchesan S
    ACS Nano; 2018 Jun; 12(6):5530-5538. PubMed ID: 29787672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrapeptidic molecular hydrogels: self-assembly and co-aggregation with amyloid fragment Aβ1-40.
    Tena-Solsona M; Miravet JF; Escuder B
    Chemistry; 2014 Jan; 20(4):1023-31. PubMed ID: 24338754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-driven first-step events of nanoscale self-assembly for molecular peptide fibers: An experimental and theoretical study.
    Forte G; Messina GML; Zamuner A; Dettin M; Grassi A; Marletta G
    Colloids Surf B Biointerfaces; 2018 Aug; 168():148-155. PubMed ID: 29395383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis.
    Kurbasic M; Garcia AM; Viada S; Marchesan S
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling protein hydrogels with modular integrin binding domains.
    Mi L; Fischer S; Chung B; Sundelacruz S; Harden JL
    Biomacromolecules; 2006 Jan; 7(1):38-47. PubMed ID: 16398496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of nanostructured tripeptide gels by directional ultrasonication.
    Pappas CG; Frederix PW; Mutasa T; Fleming S; Abul-Haija YM; Kelly SM; Gachagan A; Kalafatovic D; Trevino J; Ulijn RV; Bai S
    Chem Commun (Camb); 2015 May; 51(40):8465-8. PubMed ID: 25891849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Principles of Peptide Based Self-Assembled Nanomaterials.
    Seoudi RS; Mechler A
    Adv Exp Med Biol; 2017; 1030():51-94. PubMed ID: 29081050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.