These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 25515887)

  • 21. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extremely Stable Supramolecular Hydrogels Assembled from Nonionic Peptide Amphiphiles.
    Wan Y; Wang Z; Sun J; Li Z
    Langmuir; 2016 Aug; 32(30):7512-8. PubMed ID: 27399915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tripeptide self-assembled hydrogels: unexpected twists of chirality.
    Marchesan S; Easton CD; Kushkaki F; Waddington L; Hartley PG
    Chem Commun (Camb); 2012 Feb; 48(16):2195-7. PubMed ID: 22159641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of varied sequence pattern on the self-assembly of amphipathic peptides.
    Lee NR; Bowerman CJ; Nilsson BL
    Biomacromolecules; 2013 Sep; 14(9):3267-77. PubMed ID: 23952713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of an aspartate-rich sequence from the adenovirus fiber shaft: insights from molecular dynamics simulations and experiments.
    Tamamis P; Terzaki K; Kassinopoulos M; Mastrogiannis L; Mossou E; Forsyth VT; Mitchell EP; Mitraki A; Archontis G
    J Phys Chem B; 2014 Feb; 118(7):1765-74. PubMed ID: 24437637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials.
    Marchesan S; Easton CD; Styan KE; Waddington LJ; Kushkaki F; Goodall L; McLean KM; Forsythe JS; Hartley PG
    Nanoscale; 2014 May; 6(10):5172-80. PubMed ID: 24700146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
    Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition.
    Chan KH; Xue B; Robinson RC; Hauser CAE
    Sci Rep; 2017 Oct; 7(1):12897. PubMed ID: 29018249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Branched peptides for enzymatic supramolecular hydrogelation.
    He H; Wang H; Zhou N; Yang D; Xu B
    Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining Experimental and Simulation Techniques to Understand Morphology Control in Pentapeptide Nanostructures.
    Mishra NK; Jain A; Peter C; Verma S
    J Phys Chem B; 2017 Aug; 121(34):8155-8161. PubMed ID: 28774171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides.
    Venanzi M; Gatto E; Formaggio F; Toniolo C
    J Pept Sci; 2017 Feb; 23(2):104-116. PubMed ID: 28054413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of alkylated residues in the tetrapeptide self-assembly-A molecular dynamics study.
    Muthusivarajan R; Allen WJ; Pehere AD; Sokolov KV; Fuentes D
    J Comput Chem; 2020 Dec; 41(31):2634-2640. PubMed ID: 32930440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length.
    Castelletto V; Kaur A; Kowalczyk RM; Hamley IW; Reza M; Ruokolainen J
    Biomacromolecules; 2017 Jul; 18(7):2013-2023. PubMed ID: 28535062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of tripeptides into γ-turn nanostructures.
    Ozawa Y; Sato H; Kayano Y; Yamaki N; Izato YI; Miyake A; Naito A; Kawamura I
    Phys Chem Chem Phys; 2019 Jun; 21(21):10879-10883. PubMed ID: 30968092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence-Dependent Nanofiber Structures of Phenylalanine and Isoleucine Tripeptides.
    Xiong Q; Liu Z; Han W
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing peptide based nanomaterials.
    Ulijn RV; Smith AM
    Chem Soc Rev; 2008 Apr; 37(4):664-75. PubMed ID: 18362975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.
    Mangelschots J; Bibian M; Gardiner J; Waddington L; Van Wanseele Y; Van Eeckhaut A; Acevedo MM; Van Mele B; Madder A; Hoogenboom R; Ballet S
    Biomacromolecules; 2016 Feb; 17(2):437-45. PubMed ID: 26741458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.