BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25516162)

  • 1. Evaluation of filtering methods for acquiring radial intra-artery blood pressure waveforms.
    Hersh LT; Friedman B; Luczyk W; Sesing J
    J Clin Monit Comput; 2015 Oct; 29(5):659-69. PubMed ID: 25516162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind identification of the central aortic pressure waveform from multiple peripheral arterial pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1822-5. PubMed ID: 17945671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiautomatic algorithm to remove resonance artifacts from the direct radial artery pressure.
    Schwid HA
    Biomed Instrum Technol; 1989; 23(1):40-3. PubMed ID: 2924050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple non-physiological artifact filter for invasive arterial blood pressure monitoring: a study of 1852 trauma ICU patients.
    Cao H; Norris P; Ozdas A; Jenkins J; Morris JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1417-20. PubMed ID: 17946044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery.
    Tyan CC; Liu SH; Chen JY; Chen JJ; Liang WM
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):288-97. PubMed ID: 18232373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method.
    Tanaka S; Nogawa M; Yamakoshi T; Yamakoshi K
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1892-5. PubMed ID: 17926688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2257-64. PubMed ID: 17208992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a conical cuff on the forearm for estimating radial artery blood pressure.
    Hersh LT; Sesing JC; Luczyk WJ; Friedman BA; Zhou S; Batchelder PB
    Blood Press Monit; 2014 Feb; 19(1):38-45. PubMed ID: 24217368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accuracy of blood pressure measured by arterial line and non-invasive cuff in critically ill children.
    Joffe R; Duff J; Garcia Guerra G; Pugh J; Joffe AR
    Crit Care; 2016 Jun; 20(1):177. PubMed ID: 27268414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement.
    Harju J; Vehkaoja A; Kumpulainen P; Campadello S; Lindroos V; Yli-Hankala A; Oksala N
    J Clin Monit Comput; 2018 Feb; 32(1):13-22. PubMed ID: 28105538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator.
    Li Q; Mark RG; Clifford GD
    Biomed Eng Online; 2009 Jul; 8():13. PubMed ID: 19586547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous blood pressure monitoring via non-invasive radial artery applanation tonometry and invasive arterial catheter demonstrates good agreement in patients undergoing colon carcinoma surgery.
    Sun J; Chen H; Zheng J; Mao B; Zhu S; Feng J
    J Clin Monit Comput; 2017 Dec; 31(6):1189-1195. PubMed ID: 28000041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Blood Pulsation Simulator Platform Incorporating Cardiovascular Physiology for Evaluating Radial Pulse Waveform.
    Yang TH; Kim JU; Kim YM; Koo JH; Woo SY
    J Healthc Eng; 2019; 2019():4938063. PubMed ID: 30886685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can a clinically useful aortic pressure wave be derived from a radial pressure wave?
    Söderström S; Nyberg G; O'Rourke MF; Sellgren J; Pontén J
    Br J Anaesth; 2002 Apr; 88(4):481-8. PubMed ID: 12066722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal filter design to compute the mean of cardiovascular pressure signals.
    Ellis T; McNames J; Goldstein B
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1399-407. PubMed ID: 18390331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications for clinical monitoring of intra-arterial blood pressure based on the frequency content of worst-case pressure waveforms.
    Paulsen AW
    Biomed Instrum Technol; 1993; 27(3):217-34. PubMed ID: 8513385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring aortic stiffness in the presence of measurement artifact based on an arterial tube model.
    Xu D; Zhang G; Olivier N; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3453-6. PubMed ID: 21097261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study.
    Romagnoli S; Ricci Z; Quattrone D; Tofani L; Tujjar O; Villa G; Romano SM; De Gaudio AR
    Crit Care; 2014 Nov; 18(6):644. PubMed ID: 25433536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure.
    Shih YT; Cheng HM; Sung SH; Hu WC; Chen CH
    Hypertension; 2014 Apr; 63(4):865-70. PubMed ID: 24420554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.