BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25516207)

  • 21. Evaluation of the antioxidant activity of Coreopsis tinctoria Nuff. and optimisation of isolation by response surface methodology.
    Lan S; Lin J; Zheng N
    Acta Pharm; 2014 Sep; 64(3):369-78. PubMed ID: 25296682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eriodictyol 7‑O‑β‑D glucopyranoside from Coreopsis tinctoria Nutt. ameliorates lipid disorders via protecting mitochondrial function and suppressing lipogenesis.
    Liang Y; Niu H; Ma L; Du D; Wen L; Xia Q; Huang W
    Mol Med Rep; 2017 Aug; 16(2):1298-1306. PubMed ID: 28627652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracts of Coreopsis tinctoria Nutt. Flower Exhibit Antidiabetic Effects via the Inhibition of α-Glucosidase Activity.
    Cai W; Yu L; Zhang Y; Feng L; Kong S; Tan H; Xu H; Huang C
    J Diabetes Res; 2016; 2016():2340276. PubMed ID: 27088095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-Lipid Peroxidation, α-Glucosidase and α-Amylase Inhibitory Effects of the Extract of Capitula of Coreopsis tinctoria Nutt. and Protection Effects on High-Fat/High-Sugar and Streptozotocin-Induced Type 2 Diabetes in Mice.
    Zhang Y; Luo L; Li Z; Li H; Yao X; Luo R
    Chem Biodivers; 2019 Dec; 16(12):e1900514. PubMed ID: 31609067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing the absorption of the extracts of Coreopsis tinctoria Nutt. in the intestinal canal in rats using an Ussing chamber.
    Wang J; Aierken G; Li X; Li L; Mao X
    J Ethnopharmacol; 2016 Jun; 186():73-83. PubMed ID: 27045866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro.
    Ademiluyi AO; Oboh G
    J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):17-25. PubMed ID: 22865445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenolic metabolites from Pyruscalleryana and evaluation of its free radical scavenging activity.
    Nassar MI; Mohamed TK; El-Toumy SA; Gaara AH; El-Kashak WA; Brouard I; El-Kousy SM
    Carbohydr Res; 2011 Jan; 346(1):64-7. PubMed ID: 21130983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction and Quantification of Sinapinic Acid from Irish Rapeseed Meal and Assessment of Angiotensin-I Converting Enzyme (ACE-I) Inhibitory Activity.
    Quinn L; Gray SG; Meaney S; Finn S; McLoughlin P; Hayes M
    J Agric Food Chem; 2017 Aug; 65(32):6886-6892. PubMed ID: 28748695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.
    Ademiluyi AO; Oboh G
    Exp Toxicol Pathol; 2013 Mar; 65(3):305-9. PubMed ID: 22005499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Chemical constituents of Coreopsis tinctoria].
    Zhang Y; Tu PF
    Zhongguo Zhong Yao Za Zhi; 2012 Dec; 37(23):3581-4. PubMed ID: 23477144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.
    Tundis R; Nadjafi F; Menichini F
    Phytother Res; 2013 Apr; 27(4):572-80. PubMed ID: 22693035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-inflammatory and antioxidant activities of phenolic compounds from Desmodium caudatum leaves and stems.
    Li W; Sun YN; Yan XT; Yang SY; Kim S; Chae D; Hyun JW; Kang HK; Koh YS; Kim YH
    Arch Pharm Res; 2014 Jun; 37(6):721-7. PubMed ID: 24026429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel polyacetylenes from Coreopsis tinctoria Nutt.
    Liu Y; Du D; Liang Y; Xin G; Huang BZ; Huang W
    J Asian Nat Prod Res; 2015; 17(7):744-9. PubMed ID: 25563069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of phenolic compounds, antioxidant and anticancer activity of Chrozophora tinctoria accessions collected from different regions of Iran.
    Golkar P; Taghizadeh M; Jalali SAH
    J Food Biochem; 2019 Nov; 43(11):e13036. PubMed ID: 31495949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte.
    Peng A; Lin L; Zhao M; Sun B
    Food Res Int; 2019 Sep; 123():64-74. PubMed ID: 31285013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and antioxidant investigations: Norfolk pine needles (Araucaria excelsa).
    Michael HN; Awad HM; El-Sayed NH; Paré PW
    Pharm Biol; 2010 May; 48(5):534-8. PubMed ID: 20645796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect.
    Kim JS; Kwon YS; Sa YJ; Kim MJ
    J Agric Food Chem; 2011 Jan; 59(1):138-44. PubMed ID: 21142100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of oral glucose tolerance by Wistar rats after treatment with Coreopsis tinctoria infusion.
    Dias T; Mota-Filipe H; Liu B; Jones P; Houghton PJ; Paulo A
    Phytother Res; 2010 May; 24(5):699-705. PubMed ID: 19827015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and identification of flavonoids from Coreopsis lanceolata L. petals.
    Okada Y; Okita M; Murai Y; Okano Y; Nomura M
    Nat Prod Res; 2014; 28(3):201-4. PubMed ID: 24236492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New antioxidant phenolic glycosides from Walsura yunnanensis.
    Luo XD; Wu DG; Cai XH; Kennelly EJ
    Chem Biodivers; 2006 Feb; 3(2):224-30. PubMed ID: 17193261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.