These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25516233)

  • 1. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.
    Chik WWB; Kosobrodov R; Bhaskaran A; Barry MAT; Nguyen DT; Pouliopoulos J; Byth K; Sivagangabalan G; Thomas SP; Ross DL; McEwan A; Kovoor P; Thiagalingam A
    J Cardiovasc Electrophysiol; 2015 Apr; 26(4):440-447. PubMed ID: 25516233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing intramyocardial steam formation with a radiofrequency ablation catheter incorporating near-field ultrasound.
    Wright M; Harks E; Deladi S; Fokkenrood S; Zuo F; Van Dusschoten A; Kolen AF; Belt H; Sacher F; Hocini M; Haïssaguerre M; Jaïs P
    J Cardiovasc Electrophysiol; 2013 Dec; 24(12):1403-9. PubMed ID: 23889831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Radiofrequency Ablation Catheter Parameters That May Induce Intracardiac Steam Pops: Direct Visualization of Elicitation in Reanimated Swine Hearts.
    Iles TL; Quallich SG; Iaizzo PA
    J Cardiovasc Transl Res; 2019 Jun; 12(3):250-256. PubMed ID: 30430355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of steam pops during irrigated RF ablation: novel insights from microwave radiometry.
    Koruth JS; Dukkipati S; Gangireddy S; McCarthy J; Spencer D; Weinberg AD; Miller MA; D'Avila A; Reddy VY
    J Cardiovasc Electrophysiol; 2013 Nov; 24(11):1271-7. PubMed ID: 23751084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size.
    Ikeda A; Nakagawa H; Lambert H; Shah DC; Fonck E; Yulzari A; Sharma T; Pitha JV; Lazzara R; Jackman WM
    Circ Arrhythm Electrophysiol; 2014 Dec; 7(6):1174-80. PubMed ID: 25381331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and efficacy of delivering high-power short-duration radiofrequency ablation lesions utilizing a novel temperature sensing technology.
    Rozen G; Ptaszek LM; Zilberman I; Douglas V; Heist EK; Beeckler C; Altmann A; Ruskin JN; Govari A; Mansour M
    Europace; 2018 Nov; 20(FI_3):f444-f450. PubMed ID: 29579196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips.
    Nguyen DT; Olson M; Zheng L; Barham W; Moss JD; Sauer WH
    J Cardiovasc Electrophysiol; 2015 Jul; 26(7):792-8. PubMed ID: 25864402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Controlled Radiofrequency Ablation Using Irrigated Catheters: Maximizing Ventricular Lesion Dimensions While Reducing Steam-Pop Formation.
    Leshem E; Zilberman I; Barkagan M; Shapira-Daniels A; Sroubek J; Govari A; Buxton AE; Anter E
    JACC Clin Electrophysiol; 2020 Jan; 6(1):83-93. PubMed ID: 31971910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of microbubble formation during radiofrequency ablation using phonocardiography.
    Kotini P; Mohler S; Ellenbogen KA; Wood MA
    Europace; 2006 May; 8(5):333-5. PubMed ID: 16635989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Measure of Local Impedance Predicts Catheter-Tissue Contact and Lesion Formation.
    Sulkin MS; Laughner JI; Hilbert S; Kapa S; Kosiuk J; Younan P; Romero I; Shuros A; Hamann JJ; Hindricks G; Bollmann A
    Circ Arrhythm Electrophysiol; 2018 Apr; 11(4):e005831. PubMed ID: 29618475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance fluctuation and steam pop occurrence during radiofrequency current ablation: An experimental in vitro model.
    Olszewski R; Ptaszyński P; Cygankiewicz I; Kaczmarek K
    Adv Clin Exp Med; 2021 Oct; 30(10):1051-1056. PubMed ID: 34610218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance decrement indexes for avoiding steam-pop during bipolar radiofrequency ablation: An experimental study using a dual-bath preparation.
    Saitoh O; Oikawa A; Sugai A; Chinushi M
    J Cardiovasc Electrophysiol; 2020 Dec; 31(12):3302-3310. PubMed ID: 32981132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steam pops during irrigated radiofrequency ablation: feasibility of impedance monitoring for prevention.
    Seiler J; Roberts-Thomson KC; Raymond JM; Vest J; Delacretaz E; Stevenson WG
    Heart Rhythm; 2008 Oct; 5(10):1411-6. PubMed ID: 18929327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ablation with an internally irrigated radiofrequency catheter: learning how to avoid steam pops.
    Cooper JM; Sapp JL; Tedrow U; Pellegrini CP; Robinson D; Epstein LM; Stevenson WG
    Heart Rhythm; 2004 Sep; 1(3):329-33. PubMed ID: 15851179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing Safe Working Parameters for Radiofrequency Ablation In Vitro Using Acoustic Sensing, Probability Mapping, and Catheter Contact Angle.
    El Khoury W; Al Aaraj J; Gebran A; Hajjar M; Abbas R; Daoud H; Khoury M; Abi-Saleh B; Oweis GF; Refaat MM
    J Innov Card Rhythm Manag; 2022 Jul; 13(7):5087-5099. PubMed ID: 35949646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF electrode-tissue coverage significantly influences steam pop incidence and lesion size.
    Bourier F; Popa M; Kottmaier M; Maurer S; Bahlke F; Telishevska M; Lengauer S; Koch-Büttner K; Kornmayer M; Risse E; Brkic A; Reents T; Hessling G; Deisenhofer I
    J Cardiovasc Electrophysiol; 2021 Jun; 32(6):1594-1599. PubMed ID: 33928696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Incidence of Audible Steam Pops Is Increased and Unpredictable With the ThermoCool® Surround Flow Catheter During Left Atrial Catheter Ablation: A Prospective Observational Study.
    Theis C; Rostock T; Mollnau H; Sonnenschein S; Himmrich E; Kämpfner D; Ocete BQ; Bock K; Münzel T; Konrad T
    J Cardiovasc Electrophysiol; 2015 Sep; 26(9):956-962. PubMed ID: 26062031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of radiofrequency energy delivered through partially insulated metallic catheter tips on myocardial tissue heating and ablation lesion characteristics.
    Nguyen DT; Moss JD; Zheng L; Huang J; Barham W; Sauer WH
    Heart Rhythm; 2015 Mar; 12(3):623-630. PubMed ID: 25460861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Validation of the Lesion Size Index to Predict Lesion Width and Depth After Irrigated Radiofrequency Ablation in a Porcine Model.
    Calzolari V; De Mattia L; Indiani S; Crosato M; Furlanetto A; Licciardello C; Squasi PAM; Olivari Z
    JACC Clin Electrophysiol; 2017 Oct; 3(10):1126-1135. PubMed ID: 29759495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact-force recovery can predict cardiac perforation during radiofrequency ablation.
    Nazeri A; Ganapathy A; Massumi A; Massumi M; Constantine G; Raz S; Razavi M
    Pacing Clin Electrophysiol; 2014 Sep; 37(9):1129-32. PubMed ID: 24797921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.