These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 25516421)

  • 1. Non-invasive control interfaces for intention detection in active movement-assistive devices.
    Lobo-Prat J; Kooren PN; Stienen AH; Herder JL; Koopman BF; Veltink PH
    J Neuroeng Rehabil; 2014 Dec; 11():168. PubMed ID: 25516421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remapping residual coordination for controlling assistive devices and recovering motor functions.
    Pierella C; Abdollahi F; Farshchiansadegh A; Pedersen J; Thorp EB; Mussa-Ivaldi FA; Casadio M
    Neuropsychologia; 2015 Dec; 79(Pt B):364-76. PubMed ID: 26341935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Residual Movement Classification Based User Interface for Control of Assistive Devices by Persons With Complete Tetraplegia.
    Fonseca L; Guiraud D; Hiairrassary A; Fattal C; Azevedo-Coste C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():569-578. PubMed ID: 35235517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control Interface Remapping for Bias-Aware Assistive Teleoperation.
    Thompson A; Loke LYC; Argall B
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A haptic and auditory assistive user interface: helping the blinds on their computer operations.
    Jaijongrak VR; Kumazawa I; Thiemjarus S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975341. PubMed ID: 22275546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can brain computer interfaces become practical assistive devices in the community?
    McCullagh P; Ware M; Mulvenna M; Lightbody G; Nugent C; McAllister G; Thomson E; Martin S; Mathews S; Todd D; Cruz Medina V; Carro S
    Stud Health Technol Inform; 2010; 160(Pt 1):314-8. PubMed ID: 20841700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems.
    Koochaki F; Najafizadeh L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():974-984. PubMed ID: 34038364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic algorithm for estimating the intention of computer users with movement disorders.
    Grossman AD; Sanger TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3605-8. PubMed ID: 18002777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedded systems for supporting computer accessibility.
    Mulfari D; Celesti A; Fazio M; Villari M; Puliafito A
    Stud Health Technol Inform; 2015; 217():378-85. PubMed ID: 26294501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptability of Assistive Mobility Devices and the Role of the Internet of Medical Things: Comprehensive Review.
    Oladele DA; Markus ED; Abu-Mahfouz AM
    JMIR Rehabil Assist Technol; 2021 Nov; 8(4):e29610. PubMed ID: 34779786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Control Interfaces for Active Trunk Support.
    Verros S; Mahmood N; Peeters L; Lobo-Prat J; Bergsma A; Hekman E; Verkerke GJ; Koopman B
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1965-1974. PubMed ID: 30137011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive brain-computer interface system to operate assistive devices.
    Cincotti F; Aloise F; Bufalari S; Schalk G; Oriolo G; Cherubini A; Davide F; Babiloni F; Marciani MG; Mattia D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2532-5. PubMed ID: 18002510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface Operation and Implications for Shared-Control Assistive Robots.
    Javaremi MN; Young M; Argall BD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():232-239. PubMed ID: 31374635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eyelid Drive System: An Assistive Technology Employing Inductive Sensing of Eyelid Movement.
    Graybill P; Kiani M
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):203-213. PubMed ID: 30475729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated control and related technology of assistive devices.
    Ding D; Cooper RA; Kaminski BA; Kanaly JR; Allegretti A; Chaves E; Hubbard S
    Assist Technol; 2003; 15(2):89-97. PubMed ID: 15137725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.
    Fall CL; Gagnon-Turcotte G; Dube JF; Gagne JS; Delisle Y; Campeau-Lecours A; Gosselin C; Gosselin B
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):967-977. PubMed ID: 28026793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.
    Mora N; De Munari I; Ciampolini P; Del R Millán J
    Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding functional reorganization of motor redundancy using a body-machine interface.
    De Santis D; Mussa-Ivaldi FA
    J Neuroeng Rehabil; 2020 May; 17(1):61. PubMed ID: 32393288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of EMG-Based Classification and Robot Control Method on User's Neuromuscular Effort during Real-Time Assistive Hand Exoskeleton Operation.
    Esmatloo P; Deshpande AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7515. PubMed ID: 34892831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.