BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25516475)

  • 1. Au nanorod helical superstructures with designed chirality.
    Lan X; Lu X; Shen C; Ke Y; Ni W; Wang Q
    J Am Chem Soc; 2015 Jan; 137(1):457-62. PubMed ID: 25516475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral Patterning of Au Nanoparticles on Au Nanorod Surface to Form Chiral AuNR@AuNP Helical Superstructures Templated by DNA Origami.
    Shen C; Lan X; Zhu C; Zhang W; Wang L; Wang Q
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28218431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality.
    Lan X; Chen Z; Dai G; Lu X; Ni W; Wang Q
    J Am Chem Soc; 2013 Aug; 135(31):11441-4. PubMed ID: 23879265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami.
    Chen Z; Choi CKK; Wang Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26835-26840. PubMed ID: 30073831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns.
    Liu Y; Ma L; Jiang S; Han C; Tang P; Yang H; Duan X; Liu N; Yan H; Lan X
    ACS Nano; 2021 Oct; 15(10):16664-16672. PubMed ID: 34636539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Active AuNR@Ag Core-Shell Nanoparticles and Hierarchical Assembly via DNA-Mediated Surface Chemistry.
    Lan X; Wang Q
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34598-34602. PubMed ID: 27936559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of Gold Nanorods into Chiral Plasmonic Metamolecules Using DNA Origami Templates.
    Huang Y; Nguyen MK; Kuzyk A
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps.
    Shen C; Lan X; Lu X; Meyer TA; Ni W; Ke Y; Wang Q
    J Am Chem Soc; 2016 Feb; 138(6):1764-7. PubMed ID: 26824749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the structural asymmetries of three-dimensional gold nanorod assemblies.
    Shen C; Lan X; Lu X; Ni W; Wang Q
    Chem Commun (Camb); 2015 Sep; 51(71):13627-9. PubMed ID: 26229996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
    Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y
    ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-Guided Plasmonic Helix with Switchable Chirality.
    Lan X; Liu T; Wang Z; Govorov AO; Yan H; Liu Y
    J Am Chem Soc; 2018 Sep; 140(37):11763-11770. PubMed ID: 30129752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-Up Fabrication of Large-Scale Gold Nanorod Arrays by Surface Diffusion-Mediated DNA Origami Assembly.
    Yang S; Liu W; Zhang Y; Wang R
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50516-50523. PubMed ID: 34637259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures.
    Liu B; Song C; Zhu D; Wang X; Zhao M; Yang Y; Zhang Y; Su S; Shi J; Chao J; Liu H; Zhao Y; Fan C; Wang L
    Small; 2017 Jun; 13(23):. PubMed ID: 28452121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.
    Shen X; Song C; Wang J; Shi D; Wang Z; Liu N; Ding B
    J Am Chem Soc; 2012 Jan; 134(1):146-9. PubMed ID: 22148355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors.
    Guo L; Zhou X; Kim DH
    Biosens Bioelectron; 2011 Jan; 26(5):2246-51. PubMed ID: 21035320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable optical activity of plasmonic dimers assembled by DNA origami.
    Rao C; Wang ZG; Li N; Zhang W; Xu X; Ding B
    Nanoscale; 2015; 7(20):9147-52. PubMed ID: 25924774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds.
    Song T; Tang L; Tan LH; Wang X; Satyavolu NS; Xing H; Wang Z; Li J; Liang H; Lu Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8114-8. PubMed ID: 26096755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA directed self-assembly of anisotropic plasmonic nanostructures.
    Pal S; Deng Z; Wang H; Zou S; Liu Y; Yan H
    J Am Chem Soc; 2011 Nov; 133(44):17606-9. PubMed ID: 21981707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering DNA self-assemblies as templates for functional nanostructures.
    Wang ZG; Ding B
    Acc Chem Res; 2014 Jun; 47(6):1654-62. PubMed ID: 24588320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.