These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25516600)

  • 1. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress.
    Nakayama H; Nakayama N; Seiki S; Kojima M; Sakakibara H; Sinha N; Kimura S
    Plant Cell; 2014 Dec; 26(12):4733-48. PubMed ID: 25516600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans.
    Hay A; Kaur H; Phillips A; Hedden P; Hake S; Tsiantis M
    Curr Biol; 2002 Sep; 12(18):1557-65. PubMed ID: 12372247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae).
    Nakayama H; Kimura S
    Plant Signal Behav; 2015; 10(12):e1091909. PubMed ID: 26367499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of leaf development via regulation of KNOX1 genes.
    Uchida N; Kimura S; Koenig D; Sinha N
    J Plant Res; 2010 Jan; 123(1):7-14. PubMed ID: 19506991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate.
    Barth S; Geier T; Eimert K; Watillon B; Sangwan RS; Gleissberg S
    Planta; 2009 Nov; 230(6):1081-91. PubMed ID: 19685246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Basis for Natural Vegetative Propagation via Regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae).
    Amano R; Nakayama H; Momoi R; Omata E; Gunji S; Takebayashi Y; Kojima M; Ikematsu S; Ikeuchi M; Iwase A; Sakamoto T; Kasahara H; Sakakibara H; Ferjani A; Kimura S
    Plant Cell Physiol; 2020 Feb; 61(2):353-369. PubMed ID: 31651939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of knox genes in plant development.
    Hake S; Smith HM; Holtan H; Magnani E; Mele G; Ramirez J
    Annu Rev Cell Dev Biol; 2004; 20():125-51. PubMed ID: 15473837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity.
    Wang Y; Strauss S; Liu S; Pieper B; Lymbouridou R; Runions A; Tsiantis M
    Curr Biol; 2022 Sep; 32(17):3773-3784.e5. PubMed ID: 36029772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the molecular basis of heterophylly in North American lake cress.
    Farquharson KL
    Plant Cell; 2014 Dec; 26(12):4567. PubMed ID: 25538187
    [No Abstract]   [Full Text] [Related]  

  • 11. Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis.
    Singh DP; Filardo FF; Storey R; Jermakow AM; Yamaguchi S; Swain SM
    Physiol Plant; 2010 Jan; 138(1):74-90. PubMed ID: 19825007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LMI1-like and KNOX1 genes coordinately regulate plant leaf development in dicotyledons.
    Chang L; Mei G; Hu Y; Deng J; Zhang T
    Plant Mol Biol; 2019 Mar; 99(4-5):449-460. PubMed ID: 30689141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf Cell Morphology Alternation in Response to Environmental Signals in
    Sakamoto T; Ikematsu S; Namie K; Hou H; Li G; Kimura S
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologies in leaf form inferred from KNOXI gene expression during development.
    Bharathan G; Goliber TE; Moore C; Kessler S; Pham T; Sinha NR
    Science; 2002 Jun; 296(5574):1858-60. PubMed ID: 12052958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development.
    Uchida N; Townsley B; Chung KH; Sinha N
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15953-8. PubMed ID: 17898165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication.
    Furumizu C; Alvarez JP; Sakakibara K; Bowman JL
    PLoS Genet; 2015 Feb; 11(2):e1004980. PubMed ID: 25671434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase.
    Tanaka-Ueguchi M; Itoh H; Oyama N; Koshioka M; Matsuoka M
    Plant J; 1998 Aug; 15(3):391-400. PubMed ID: 9750350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta.
    Hay A; Tsiantis M
    Nat Genet; 2006 Aug; 38(8):942-7. PubMed ID: 16823378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves.
    Kim M; Pham T; Hamidi A; McCormick S; Kuzoff RK; Sinha N
    Development; 2003 Sep; 130(18):4405-15. PubMed ID: 12900456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato.
    Jasinski S; Tattersall A; Piazza P; Hay A; Martinez-Garcia JF; Schmitz G; Theres K; McCormick S; Tsiantis M
    Plant J; 2008 Nov; 56(4):603-12. PubMed ID: 18643984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.