These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25516963)

  • 1. From naïve pluripotency to chimeras: a new ethical challenge?
    Hyun I
    Development; 2015 Jan; 142(1):6-8. PubMed ID: 25516963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethical considerations in chimera research.
    Hermerén G
    Development; 2015 Jan; 142(1):3-5. PubMed ID: 25516962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of human/non-human animal chimeras to stem cell research.
    Levine S; Grabel L
    Stem Cell Res; 2017 Oct; 24():128-134. PubMed ID: 28941410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research.
    Mascetti VL; Pedersen RA
    Cell Stem Cell; 2016 Aug; 19(2):163-175. PubMed ID: 27494674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pluripotency Continuum and Interspecies Chimeras.
    De Los Angeles A
    Curr Protoc Stem Cell Biol; 2019 Sep; 50(1):e87. PubMed ID: 31184444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethical considerations for human-animal neurological chimera research: mouse models and beyond.
    Hyun I
    EMBO J; 2019 Oct; 38(21):e103331. PubMed ID: 31602659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state.
    De Los Angeles A; Elsworth JD; Redmond DE
    Biochem Biophys Res Commun; 2019 Feb; 510(1):78-84. PubMed ID: 30660369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Pluripotent Stem Cell States and Their Applications.
    Wu J; Izpisua Belmonte JC
    Cell Stem Cell; 2015 Nov; 17(5):509-25. PubMed ID: 26544113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecies chimeras for human stem cell research.
    Masaki H; Nakauchi H
    Development; 2017 Jul; 144(14):2544-2547. PubMed ID: 28720651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.
    Masaki H; Kato-Itoh M; Umino A; Sato H; Hamanaka S; Kobayashi T; Yamaguchi T; Nishimura K; Ohtaka M; Nakanishi M; Nakauchi H
    Development; 2015 Sep; 142(18):3222-30. PubMed ID: 26023098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells.
    Aksoy I; Rognard C; Moulin A; Marcy G; Masfaraud E; Wianny F; Cortay V; Bellemin-Ménard A; Doerflinger N; Dirheimer M; Mayère C; Bourillot PY; Lynch C; Raineteau O; Joly T; Dehay C; Serrano M; Afanassieff M; Savatier P
    Stem Cell Reports; 2021 Jan; 16(1):56-74. PubMed ID: 33382978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation.
    De Los Angeles A
    Exp Cell Res; 2020 Feb; 387(1):111747. PubMed ID: 31778671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells.
    Ishii T; Pera RA; Greely HT
    Cell Stem Cell; 2013 Aug; 13(2):145-8. PubMed ID: 23910081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenogeneic chimera-Generated by blastocyst complementation-As a potential unlimited source of recipient-tailored organs.
    Oldani G; Peloso A; Lacotte S; Meier R; Toso C
    Xenotransplantation; 2017 Jul; 24(4):. PubMed ID: 28736957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts.
    Hyun I; Clayton EW; Cong Y; Fujita M; Goldman SA; Hill LR; Monserrat N; Nakauchi H; Pedersen RA; Rooke HM; Takahashi J; Knoblich JA
    Stem Cell Reports; 2021 Jun; 16(6):1409-1415. PubMed ID: 34048695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges.
    De Los Angeles A; Hyun I; Latham SR; Elsworth JD; Redmond DE
    Methods Mol Biol; 2019; 2005():221-231. PubMed ID: 31175656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.
    Yang Y; Liu B; Xu J; Wang J; Wu J; Shi C; Xu Y; Dong J; Wang C; Lai W; Zhu J; Xiong L; Zhu D; Li X; Yang W; Yamauchi T; Sugawara A; Li Z; Sun F; Li X; Li C; He A; Du Y; Wang T; Zhao C; Li H; Chi X; Zhang H; Liu Y; Li C; Duo S; Yin M; Shen H; Belmonte JCI; Deng H
    Cell; 2017 Apr; 169(2):243-257.e25. PubMed ID: 28388409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers.
    De Los Angeles A; Pho N; Redmond DE
    Yale J Biol Med; 2018 Sep; 91(3):333-342. PubMed ID: 30258320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.
    Mizuno H; Akutsu H; Kato K
    Life Sci Soc Policy; 2015; 11():15. PubMed ID: 26694481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of porcine pluripotent stem cells for biomedical research.
    Shiue YL; Yang JR; Liao YJ; Kuo TY; Liao CH; Kang CH; Tai C; Anderson GB; Chen LR
    Theriogenology; 2016 Jul; 86(1):176-81. PubMed ID: 27158128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.