BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 25516983)

  • 21. Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations.
    Austin RJ; Straube J; Bruedigam C; Pali G; Jacquelin S; Vu T; Green J; Gräsel J; Lansink L; Cooper L; Lee SJ; Chen NT; Lee CW; Haque A; Heidel FH; D'Andrea R; Hill GR; Mullally A; Milsom MD; Bywater M; Lane SW
    Leukemia; 2020 Apr; 34(4):1075-1089. PubMed ID: 31732720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias.
    Abdel-Wahab O; Manshouri T; Patel J; Harris K; Yao J; Hedvat C; Heguy A; Bueso-Ramos C; Kantarjian H; Levine RL; Verstovsek S
    Cancer Res; 2010 Jan; 70(2):447-52. PubMed ID: 20068184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms.
    Chen E; Schneider RK; Breyfogle LJ; Rosen EA; Poveromo L; Elf S; Ko A; Brumme K; Levine R; Ebert BL; Mullally A
    Blood; 2015 Jan; 125(2):327-35. PubMed ID: 25281607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes.
    Welch JS; Petti AA; Miller CA; Fronick CC; O'Laughlin M; Fulton RS; Wilson RK; Baty JD; Duncavage EJ; Tandon B; Lee YS; Wartman LD; Uy GL; Ghobadi A; Tomasson MH; Pusic I; Romee R; Fehniger TA; Stockerl-Goldstein KE; Vij R; Oh ST; Abboud CN; Cashen AF; Schroeder MA; Jacoby MA; Heath SE; Luber K; Janke MR; Hantel A; Khan N; Sukhanova MJ; Knoebel RW; Stock W; Graubert TA; Walter MJ; Westervelt P; Link DC; DiPersio JF; Ley TJ
    N Engl J Med; 2016 Nov; 375(21):2023-2036. PubMed ID: 27959731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms.
    Bartalucci N; Tozzi L; Bogani C; Martinelli S; Rotunno G; Villeval JL; Vannucchi AM
    J Cell Mol Med; 2013 Nov; 17(11):1385-96. PubMed ID: 24237791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic aberrations of myeloproliferative and myelodysplastic/myeloproliferative neoplasms in chronic phase and during disease progression.
    Hahm C; Huh HJ; Mun YC; Seong CM; Chung WS; Huh J
    Int J Lab Hematol; 2015 Apr; 37(2):181-9. PubMed ID: 24845343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML.
    Saenz DT; Fiskus W; Manshouri T; Mill CP; Qian Y; Raina K; Rajapakshe K; Coarfa C; Soldi R; Bose P; Borthakur G; Kadia TM; Khoury JD; Masarova L; Nowak AJ; Sun B; Saenz DN; Kornblau SM; Horrigan S; Sharma S; Qiu P; Crews CM; Verstovsek S; Bhalla KN
    Leukemia; 2019 Jun; 33(6):1373-1386. PubMed ID: 30575820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leukemic Transformation of Myeloproliferative Neoplasms: Therapeutic and Genomic Considerations.
    Li B; Mascarenhas JO; Rampal RK
    Curr Hematol Malig Rep; 2018 Dec; 13(6):588-595. PubMed ID: 30353413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition.
    McKenney AS; Lau AN; Somasundara AVH; Spitzer B; Intlekofer AM; Ahn J; Shank K; Rapaport FT; Patel MA; Papalexi E; Shih AH; Chiu A; Freinkman E; Akbay EA; Steadman M; Nagaraja R; Yen K; Teruya-Feldstein J; Wong KK; Rampal R; Vander Heiden MG; Thompson CB; Levine RL
    J Clin Invest; 2018 Feb; 128(2):789-804. PubMed ID: 29355841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM).
    Thepot S; Itzykson R; Seegers V; Raffoux E; Quesnel B; Chait Y; Sorin L; Dreyfus F; Cluzeau T; Delaunay J; Sanhes L; Eclache V; Dartigeas C; Turlure P; Harel S; Salanoubat C; Kiladjian JJ; Fenaux P; Adès L;
    Blood; 2010 Nov; 116(19):3735-42. PubMed ID: 20664061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation.
    Sun T; Zhang L
    Clin Appl Thromb Hemost; 2013; 19(4):374-81. PubMed ID: 22826442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of multiple anti-apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms.
    Takei H; Coelho-Silva JL; Tavares Leal C; Queiroz Arantes Rocha A; Mantello Bianco T; Welner RS; Mishima Y; Kobayashi IS; Mullally A; Lima K; Machado-Neto JA; Kobayashi SS; Lobo de Figueiredo-Pontes L
    Cancer Sci; 2022 Feb; 113(2):597-608. PubMed ID: 34808021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered distribution and function of NK-cell subsets lead to impaired tumor surveillance in JAK2V617F myeloproliferative neoplasms.
    Fernandes de Oliveira Costa A; Olops Marani L; Mantello Bianco T; Queiroz Arantes A; Aparecida Lopes I; Antonio Pereira-Martins D; Carvalho Palma L; Santos Scheucher P; Lilian Dos Santos Schiavinato J; Sarri Binelli L; Araújo Silva C; Kobayashi SS; Agostinho Machado-Neto J; Magalhães Rego E; Samuel Welner R; Lobo de Figueiredo-Pontes L
    Front Immunol; 2022; 13():768592. PubMed ID: 36211444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia.
    Eghtedar A; Verstovsek S; Estrov Z; Burger J; Cortes J; Bivins C; Faderl S; Ferrajoli A; Borthakur G; George S; Scherle PA; Newton RC; Kantarjian HM; Ravandi F
    Blood; 2012 May; 119(20):4614-8. PubMed ID: 22422826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells.
    Fiskus W; Mill CP; Nabet B; Perera D; Birdwell C; Manshouri T; Lara B; Kadia TM; DiNardo C; Takahashi K; Daver N; Bose P; Masarova L; Pemmaraju N; Kornblau S; Borthakur G; Montalban-Bravo G; Manero GG; Sharma S; Stubbs M; Su X; Green MR; Coarfa C; Verstovsek S; Khoury JD; Vakoc CR; Bhalla KN
    Blood Cancer J; 2021 May; 11(5):98. PubMed ID: 34016956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can molecular insights guide treatment of AML evolved from MPNs?
    Crispino J; Rampal R
    Best Pract Res Clin Haematol; 2021 Dec; 34(4):101323. PubMed ID: 34865695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BMP2/SMAD pathway activation in JAK2/p53-mutant megakaryocyte/erythroid progenitors promotes leukemic transformation.
    Li B; An W; Wang H; Baslan T; Mowla S; Krishnan A; Xiao W; Koche RP; Liu Y; Cai SF; Xiao Z; Derkach A; Iacobucci I; Mullighan CG; Helin K; Lowe SW; Levine RL; Rampal RK
    Blood; 2022 Jun; 139(25):3630-3646. PubMed ID: 35421216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.