These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 25517036)
1. Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. Gregorczyk KE; Kozen AC; Chen X; Schroeder MA; Noked M; Cao A; Hu L; Rubloff GW ACS Nano; 2015 Jan; 9(1):464-73. PubMed ID: 25517036 [TBL] [Abstract][Full Text] [Related]
2. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes. Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038 [TBL] [Abstract][Full Text] [Related]
3. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Sassin MB; Chervin CN; Rolison DR; Long JW Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783 [TBL] [Abstract][Full Text] [Related]
4. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274 [TBL] [Abstract][Full Text] [Related]
5. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Thin Layers in Nanostructures for Energy Storage. Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834 [TBL] [Abstract][Full Text] [Related]
7. MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. Chen X; Zhu H; Chen YC; Shang Y; Cao A; Hu L; Rubloff GW ACS Nano; 2012 Sep; 6(9):7948-55. PubMed ID: 22871063 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Xia X; Zeng Z; Li X; Zhang Y; Tu J; Fan NC; Zhang H; Fan HJ Nanoscale; 2013 Jul; 5(13):6040-7. PubMed ID: 23715041 [TBL] [Abstract][Full Text] [Related]
9. Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. Zhang R; Zhang Y; Zhu K; Du F; Fu Q; Yang X; Wang Y; Bie X; Chen G; Wei Y ACS Appl Mater Interfaces; 2014 Aug; 6(15):12523-30. PubMed ID: 25010184 [TBL] [Abstract][Full Text] [Related]
10. Atomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance. Guan C; Wang Y; Zacharias M; Wang J; Fan HJ Nanotechnology; 2015 Jan; 26(1):014001. PubMed ID: 25489994 [TBL] [Abstract][Full Text] [Related]
11. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries. Ban C; Xie M; Sun X; Travis JJ; Wang G; Sun H; Dillon AC; Lian J; George SM Nanotechnology; 2013 Oct; 24(42):424002. PubMed ID: 24067324 [TBL] [Abstract][Full Text] [Related]
12. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. Ma F; Yuan A; Xu J; Hu P ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052 [TBL] [Abstract][Full Text] [Related]
13. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
14. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321 [TBL] [Abstract][Full Text] [Related]
16. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes. Ahmed B; Shahid M; Nagaraju DH; Anjum DH; Hedhili MN; Alshareef HN ACS Appl Mater Interfaces; 2015 Jun; 7(24):13154-63. PubMed ID: 26039512 [TBL] [Abstract][Full Text] [Related]
17. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. Guan C; Zeng Z; Li X; Cao X; Fan Y; Xia X; Pan G; Zhang H; Fan HJ Small; 2014 Jan; 10(2):300-7. PubMed ID: 23922279 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the top electrode material for achieving an equivalent oxide thickness smaller than 0.4 nm from an Al-doped TiO₂ film. Jeon W; Yoo S; Kim HK; Lee W; An CH; Chung MJ; Cho CJ; Kim SK; Hwang CS ACS Appl Mater Interfaces; 2014 Dec; 6(23):21632-7. PubMed ID: 25402821 [TBL] [Abstract][Full Text] [Related]
19. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378 [TBL] [Abstract][Full Text] [Related]
20. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes. Nisula M; Karppinen M Nano Lett; 2016 Feb; 16(2):1276-81. PubMed ID: 26812433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]