These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25517161)

  • 1. Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations.
    Reuss AJ; Vogel M; Weigand JE; Suess B; Wachtveitl J
    Biophys J; 2014 Dec; 107(12):2962-2971. PubMed ID: 25517161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic characterization of an engineered tetracycline-binding riboswitch.
    Müller M; Weigand JE; Weichenrieder O; Suess B
    Nucleic Acids Res; 2006; 34(9):2607-17. PubMed ID: 16707663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Mg
    Hetzke T; Vogel M; Gophane DB; Weigand JE; Suess B; Sigurdsson ST; Prisner TF
    RNA; 2019 Jan; 25(1):158-167. PubMed ID: 30337459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch.
    Xiao H; Edwards TE; Ferré-D'Amaré AR
    Chem Biol; 2008 Oct; 15(10):1125-37. PubMed ID: 18940672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain.
    Buck J; Wacker A; Warkentin E; Wöhnert J; Wirmer-Bartoschek J; Schwalbe H
    Nucleic Acids Res; 2011 Dec; 39(22):9768-78. PubMed ID: 21890900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.
    Hennelly SP; Novikova IV; Sanbonmatsu KY
    Nucleic Acids Res; 2013 Feb; 41(3):1922-35. PubMed ID: 23258703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tetracycline-binding RNA aptamer.
    Berens C; Thain A; Schroeder R
    Bioorg Med Chem; 2001 Oct; 9(10):2549-56. PubMed ID: 11557342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force field dependence of riboswitch dynamics.
    Hanke CA; Gohlke H
    Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae.
    Lipfert J; Das R; Chu VB; Kudaravalli M; Boyd N; Herschlag D; Doniach S
    J Mol Biol; 2007 Feb; 365(5):1393-406. PubMed ID: 17118400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH.
    Werner JJ; Arnold WA; McNeill K
    Environ Sci Technol; 2006 Dec; 40(23):7236-41. PubMed ID: 17180972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site.
    Hanke CA; Gohlke H
    J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.