These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25517223)

  • 1. High-quality genome (re)assembly using chromosomal contact data.
    Marie-Nelly H; Marbouty M; Cournac A; Flot JF; Liti G; Parodi DP; Syan S; Guillén N; Margeot A; Zimmer C; Koszul R
    Nat Commun; 2014 Dec; 5():5695. PubMed ID: 25517223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGAP: an automated gap closing tool.
    Piro VC; Faoro H; Weiss VA; Steffens MB; Pedrosa FO; Souza EM; Raittz RT
    BMC Res Notes; 2014 Jun; 7():371. PubMed ID: 24938749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput genome scaffolding from in vivo DNA interaction frequency.
    Kaplan N; Dekker J
    Nat Biotechnol; 2013 Dec; 31(12):1143-7. PubMed ID: 24270850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity ligation scaffolding and comparison of two
    Jourdier E; Baudry L; Poggi-Parodi D; Vicq Y; Koszul R; Margeot A; Marbouty M; Bidard F
    Biotechnol Biofuels; 2017; 10():151. PubMed ID: 28616075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing assembly complexity of microbial genomes with single-molecule sequencing.
    Koren S; Harhay GP; Smith TP; Bono JL; Harhay DM; Mcvey SD; Radune D; Bergman NH; Phillippy AM
    Genome Biol; 2013; 14(9):R101. PubMed ID: 24034426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiC-Hiker: a probabilistic model to determine contig orientation in chromosome-length scaffolds with Hi-C.
    Nakabayashi R; Morishita S
    Bioinformatics; 2020 Jul; 36(13):3966-3974. PubMed ID: 32369554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set.
    Damas J; O'Connor R; Farré M; Lenis VPE; Martell HJ; Mandawala A; Fowler K; Joseph S; Swain MT; Griffin DK; Larkin DM
    Genome Res; 2017 May; 27(5):875-884. PubMed ID: 27903645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping contigs using CONTIGuator.
    Galardini M; Mengoni A; Bazzicalupo M
    Methods Mol Biol; 2015; 1231():163-76. PubMed ID: 25343865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating genome assemblies with MAIA.
    Nijkamp J; Winterbach W; van den Broek M; Daran JM; Reinders M; de Ridder D
    Bioinformatics; 2010 Sep; 26(18):i433-9. PubMed ID: 20823304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.
    Sato K; Kuroki Y; Kumita W; Fujiyama A; Toyoda A; Kawai J; Iriki A; Sasaki E; Okano H; Sakakibara Y
    Sci Rep; 2015 Nov; 5():16894. PubMed ID: 26586576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normalization of a chromosomal contact map.
    Cournac A; Marie-Nelly H; Marbouty M; Koszul R; Mozziconacci J
    BMC Genomics; 2012 Aug; 13():436. PubMed ID: 22935139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences.
    Tamazian G; Dobrynin P; Krasheninnikova K; Komissarov A; Koepfli KP; O'Brien SJ
    Gigascience; 2016 Aug; 5(1):38. PubMed ID: 27549770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.