These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25517223)

  • 21. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Normalization of a chromosomal contact map.
    Cournac A; Marie-Nelly H; Marbouty M; Koszul R; Mozziconacci J
    BMC Genomics; 2012 Aug; 13():436. PubMed ID: 22935139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences.
    Tamazian G; Dobrynin P; Krasheninnikova K; Komissarov A; Koepfli KP; O'Brien SJ
    Gigascience; 2016 Aug; 5(1):38. PubMed ID: 27549770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome assembly of large and complex genomes using multiple references.
    Kolmogorov M; Armstrong J; Raney BJ; Streeter I; Dunn M; Yang F; Odom D; Flicek P; Keane TM; Thybert D; Paten B; Pham S
    Genome Res; 2018 Nov; 28(11):1720-1732. PubMed ID: 30341161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads.
    Du H; Liang C
    Nat Commun; 2019 Nov; 10(1):5360. PubMed ID: 31767853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OMACC: an Optical-Map-Assisted Contig Connector for improving de novo genome assembly.
    Chen YM; Yu CH; Hwang CC; Liu T
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S7. PubMed ID: 24564959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes.
    Frenkel Z; Paux E; Mester D; Feuillet C; Korol A
    BMC Bioinformatics; 2010 Nov; 11():584. PubMed ID: 21118513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C.
    Kronenberg ZN; Rhie A; Koren S; Concepcion GT; Peluso P; Munson KM; Porubsky D; Kuhn K; Mueller KA; Low WY; Hiendleder S; Fedrigo O; Liachko I; Hall RJ; Phillippy AM; Eichler EE; Williams JL; Smith TPL; Jarvis ED; Sullivan ST; Kingan SB
    Nat Commun; 2021 Apr; 12(1):1935. PubMed ID: 33911078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OSLay: optimal syntenic layout of unfinished assemblies.
    Richter DC; Schuster SC; Huson DH
    Bioinformatics; 2007 Jul; 23(13):1573-9. PubMed ID: 17463020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo likelihood-based measures for comparing genome assemblies.
    Ghodsi M; Hill CM; Astrovskaya I; Lin H; Sommer DD; Koren S; Pop M
    BMC Res Notes; 2013 Aug; 6():334. PubMed ID: 23965294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. gapFinisher: A reliable gap filling pipeline for SSPACE-LongRead scaffolder output.
    Kammonen JI; Smolander OP; Paulin L; Pereira PAB; Laine P; Koskinen P; Jernvall J; Auvinen P
    PLoS One; 2019; 14(9):e0216885. PubMed ID: 31498807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies.
    Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J
    PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated hybrid de novo assembly technologies to obtain high-quality pig genome using short and long reads.
    Du H; Diao C; Zhao P; Zhou L; Liu JF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33429431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo detection of copy number variation by co-assembly.
    Nijkamp JF; van den Broek MA; Geertman JM; Reinders MJ; Daran JM; de Ridder D
    Bioinformatics; 2012 Dec; 28(24):3195-202. PubMed ID: 23047563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative evaluation of genome assembly reconciliation tools.
    Alhakami H; Mirebrahim H; Lonardi S
    Genome Biol; 2017 May; 18(1):93. PubMed ID: 28521789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
    Swain MT; Tsai IJ; Assefa SA; Newbold C; Berriman M; Otto TD
    Nat Protoc; 2012 Jun; 7(7):1260-84. PubMed ID: 22678431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms.
    Giordano F; Aigrain L; Quail MA; Coupland P; Bonfield JK; Davies RM; Tischler G; Jackson DK; Keane TM; Li J; Yue JX; Liti G; Durbin R; Ning Z
    Sci Rep; 2017 Jun; 7(1):3935. PubMed ID: 28638050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.