These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25517256)

  • 21. Speckle properties of the logarithmically transformed signal in optical coherence tomography.
    Lee P; Gao W; Zhang X
    J Opt Soc Am A Opt Image Sci Vis; 2011 Apr; 28(4):517-22. PubMed ID: 21478944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic light scattering optical coherence tomography to probe motion of subcellular scatterers.
    Arezza NJJ; Razani M; Kolios MC
    J Biomed Opt; 2019 Feb; 24(2):1-7. PubMed ID: 30770677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal power decrease due to fringe washout as an extension of the limited Doppler flow measurement range in spectral domain optical coherence tomography.
    Walther J; Mueller G; Morawietz H; Koch E
    J Biomed Opt; 2010; 15(4):041511. PubMed ID: 20799789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity.
    Wang Y; Wang R
    Opt Lett; 2010 Nov; 35(21):3538-40. PubMed ID: 21042342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved interferometric detection of scattered light with a 4f imaging system.
    Pyhtila JW; Wax A
    Appl Opt; 2005 Apr; 44(10):1785-91. PubMed ID: 15813513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.
    Lee J; Radhakrishnan H; Wu W; Daneshmand A; Climov M; Ayata C; Boas DA
    J Cereb Blood Flow Metab; 2013 Jun; 33(6):819-25. PubMed ID: 23403378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography.
    Kalkman J; Sprik R; van Leeuwen TG
    Phys Rev Lett; 2010 Nov; 105(19):198302. PubMed ID: 21231201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of particle concentration in flow by statistical analyses of optical coherence tomography signals.
    Wang Y; Wang RK
    Opt Lett; 2011 Jun; 36(11):2143-5. PubMed ID: 21633476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography.
    Jones RS; Darling CL; Featherstone JD; Fried D
    Caries Res; 2006; 40(2):81-9. PubMed ID: 16508263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin.
    Bednov A; Ulyanov S; Cheung C; Yodh AG
    J Biomed Opt; 2004; 9(2):347-52. PubMed ID: 15065901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study.
    Weatherbee A; Sugita M; Bizheva K; Popov I; Vitkin A
    Opt Lett; 2016 Jun; 41(12):2727-30. PubMed ID: 27304274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence.
    Gbur G; Korotkova O
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):745-52. PubMed ID: 17301863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography.
    Kanngiesser J; Roth B
    Opt Express; 2020 Jun; 28(12):18224-18240. PubMed ID: 32680023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW; Reynolds JJ; Marks DL; Boppart SA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced modelling of optical coherence tomography systems.
    Andersen PE; Thrane L; Yura HT; Tycho A; Jørgensen TM; Frosz MH
    Phys Med Biol; 2004 Apr; 49(7):1307-27. PubMed ID: 15128207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback.
    Blazek M; Elsässer W; Hopkinson M; Resneau P; Krakowski M; Rossetti M; Bardella P; Gioannini M; Montrosset I
    Opt Express; 2009 Aug; 17(16):13365-72. PubMed ID: 19654741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.