These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 25517353)
21. Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010. Hulth A; Rydevik G Euro Surveill; 2011 May; 16(18):. PubMed ID: 21586265 [TBL] [Abstract][Full Text] [Related]
22. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Zhang Y; Yakob L; Bonsall MB; Hu W Sci Rep; 2019 Mar; 9(1):3262. PubMed ID: 30824756 [TBL] [Abstract][Full Text] [Related]
23. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Dugas AF; Hsieh YH; Levin SR; Pines JM; Mareiniss DP; Mohareb A; Gaydos CA; Perl TM; Rothman RE Clin Infect Dis; 2012 Feb; 54(4):463-9. PubMed ID: 22230244 [TBL] [Abstract][Full Text] [Related]
24. Using internet searches for influenza surveillance. Polgreen PM; Chen Y; Pennock DM; Nelson FD Clin Infect Dis; 2008 Dec; 47(11):1443-8. PubMed ID: 18954267 [TBL] [Abstract][Full Text] [Related]
29. Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina. Choi SB; Ahn I PLoS One; 2020; 15(7):e0233855. PubMed ID: 32673312 [TBL] [Abstract][Full Text] [Related]
30. Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits. Klembczyk JJ; Jalalpour M; Levin S; Washington RE; Pines JM; Rothman RE; Dugas AF J Med Internet Res; 2016 Jun; 18(6):e175. PubMed ID: 27354313 [TBL] [Abstract][Full Text] [Related]
31. Use of daily Internet search query data improves real-time projections of influenza epidemics. Zimmer C; Leuba SI; Yaesoubi R; Cohen T J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305417 [TBL] [Abstract][Full Text] [Related]
32. Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model. Guo P; Zhang J; Wang L; Yang S; Luo G; Deng C; Wen Y; Zhang Q Sci Rep; 2017 Apr; 7():46469. PubMed ID: 28422149 [TBL] [Abstract][Full Text] [Related]
33. Use of Internet Search Queries to Enhance Surveillance of Foodborne Illness. Bahk GJ; Kim YS; Park MS Emerg Infect Dis; 2015 Nov; 21(11):1906-12. PubMed ID: 26485066 [TBL] [Abstract][Full Text] [Related]
34. Use Internet search data to accurately track state level influenza epidemics. Yang S; Ning S; Kou SC Sci Rep; 2021 Feb; 11(1):4023. PubMed ID: 33597556 [TBL] [Abstract][Full Text] [Related]
35. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Carneiro HA; Mylonakis E Clin Infect Dis; 2009 Nov; 49(10):1557-64. PubMed ID: 19845471 [TBL] [Abstract][Full Text] [Related]
36. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. Eysenbach G AMIA Annu Symp Proc; 2006; 2006():244-8. PubMed ID: 17238340 [TBL] [Abstract][Full Text] [Related]
37. The prediction of influenza-like illness using national influenza surveillance data and Baidu query data. Wei S; Lin S; Wenjing Z; Shaoxia S; Yuejie Y; Yujie H; Shu Z; Zhong L; Ti L BMC Public Health; 2024 Feb; 24(1):513. PubMed ID: 38369456 [TBL] [Abstract][Full Text] [Related]
38. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. Chan EH; Sahai V; Conrad C; Brownstein JS PLoS Negl Trop Dis; 2011 May; 5(5):e1206. PubMed ID: 21647308 [TBL] [Abstract][Full Text] [Related]
39. Using networks to combine "big data" and traditional surveillance to improve influenza predictions. Davidson MW; Haim DA; Radin JM Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021 [TBL] [Abstract][Full Text] [Related]
40. FluBreaks: early epidemic detection from Google flu trends. Pervaiz F; Pervaiz M; Abdur Rehman N; Saif U J Med Internet Res; 2012 Oct; 14(5):e125. PubMed ID: 23037553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]