These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. Chen J; Im W; Brooks CL J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655 [TBL] [Abstract][Full Text] [Related]
6. Equipartition Principle for Internal Coordinate Molecular Dynamics. Jain A; Park IH; Vaidehi N J Chem Theory Comput; 2012 Aug; 8(8):2581-2587. PubMed ID: 23341754 [TBL] [Abstract][Full Text] [Related]
7. Protein structure refinement of CASP target proteins using GNEIMO torsional dynamics method. Larsen AB; Wagner JR; Jain A; Vaidehi N J Chem Inf Model; 2014 Feb; 54(2):508-17. PubMed ID: 24397429 [TBL] [Abstract][Full Text] [Related]
8. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Mathiowetz AM; Jain A; Karasawa N; Goddard WA Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172 [TBL] [Abstract][Full Text] [Related]
9. Can Conformational Changes of Proteins Be Represented in Torsion Angle Space? A Study with Rescaled Ridge Regression. Bastolla U; Dehouck Y J Chem Inf Model; 2019 Nov; 59(11):4929-4941. PubMed ID: 31600071 [TBL] [Abstract][Full Text] [Related]
10. Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates. Sittel F; Jain A; Stock G J Chem Phys; 2014 Jul; 141(1):014111. PubMed ID: 25005281 [TBL] [Abstract][Full Text] [Related]
11. Mapping conformational dynamics of proteins using torsional dynamics simulations. Gangupomu VK; Wagner JR; Park IH; Jain A; Vaidehi N Biophys J; 2013 May; 104(9):1999-2008. PubMed ID: 23663843 [TBL] [Abstract][Full Text] [Related]
13. Exact and efficient calculation of Lagrange multipliers in biological polymers with constrained bond lengths and bond angles: proteins and nucleic acids as example cases. García-Risueño P; Echenique P; Alonso JL J Comput Chem; 2011 Nov; 32(14):3039-46. PubMed ID: 21823135 [TBL] [Abstract][Full Text] [Related]
14. Simple, yet powerful methodologies for conformational sampling of proteins. Harada R; Takano Y; Baba T; Shigeta Y Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594 [TBL] [Abstract][Full Text] [Related]
16. On the use of intra-molecular distance and angle constraints to lengthen the time step in molecular and stochastic dynamics simulations of proteins. Pechlaner M; van Gunsteren WF Proteins; 2022 Feb; 90(2):543-559. PubMed ID: 34569110 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of molecular dynamics in Cartesian and in internal coordinates: dynamical instability in the latter caused by nonlinearity of the equations of motion. Lee SH; Palmo K; Krimm S J Comput Chem; 2007 Apr; 28(6):1107-18. PubMed ID: 17279495 [TBL] [Abstract][Full Text] [Related]
18. Latent dynamics of a protein molecule observed in dihedral angle space. Omori S; Fuchigami S; Ikeguchi M; Kidera A J Chem Phys; 2010 Mar; 132(11):115103. PubMed ID: 20331318 [TBL] [Abstract][Full Text] [Related]
19. Predicting large-scale conformational changes in proteins using energy-weighted normal modes. Palmer DS; Jensen F Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106 [TBL] [Abstract][Full Text] [Related]
20. Folding of small proteins using constrained molecular dynamics. Balaraman GS; Park IH; Jain A; Vaidehi N J Phys Chem B; 2011 Jun; 115(23):7588-96. PubMed ID: 21591767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]