These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 25517426)
1. Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels. Benavides OM; Quinn JP; Pok S; Petsche Connell J; Ruano R; Jacot JG Tissue Eng Part A; 2015 Apr; 21(7-8):1185-94. PubMed ID: 25517426 [TBL] [Abstract][Full Text] [Related]
2. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. Benavides OM; Brooks AR; Cho SK; Petsche Connell J; Ruano R; Jacot JG J Biomed Mater Res A; 2015 Aug; 103(8):2645-53. PubMed ID: 25631778 [TBL] [Abstract][Full Text] [Related]
3. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells. Benavides OM; Petsche JJ; Moise KJ; Johnson A; Jacot JG Tissue Eng Part A; 2012 Jun; 18(11-12):1123-31. PubMed ID: 22250756 [TBL] [Abstract][Full Text] [Related]
5. Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis. Liu YW; Roan JN; Wang SP; Hwang SM; Tsai MS; Chen JH; Hsieh PC Int J Cardiol; 2013 Sep; 168(1):66-75. PubMed ID: 23046594 [TBL] [Abstract][Full Text] [Related]
6. The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic fluid-derived stem cells to enhance and stabilise endothelial cell-mediated vessel formation. Lloyd-Griffith C; McFadden TM; Duffy GP; Unger RE; Kirkpatrick CJ; O'Brien FJ Acta Biomater; 2015 Oct; 26():263-73. PubMed ID: 26300337 [TBL] [Abstract][Full Text] [Related]
7. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. Mason MN; Mahoney MJ J Biomed Mater Res A; 2010 Oct; 95(1):283-93. PubMed ID: 20607870 [TBL] [Abstract][Full Text] [Related]
8. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Lee F; Kurisawa M Acta Biomater; 2013 Feb; 9(2):5143-52. PubMed ID: 22943886 [TBL] [Abstract][Full Text] [Related]
9. Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro. Yuan C; Wang P; Zhu L; Dissanayaka WL; Green DW; Tong EH; Jin L; Zhang C Tissue Eng Part A; 2015 Mar; 21(5-6):1163-72. PubMed ID: 25380198 [TBL] [Abstract][Full Text] [Related]
11. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Mühleder S; Pill K; Schaupper M; Labuda K; Priglinger E; Hofbauer P; Charwat V; Marx U; Redl H; Holnthoner W Stem Cell Res Ther; 2018 Feb; 9(1):35. PubMed ID: 29433579 [TBL] [Abstract][Full Text] [Related]
12. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Park KM; Lee Y; Son JY; Bae JW; Park KD Bioconjug Chem; 2012 Oct; 23(10):2042-50. PubMed ID: 22998168 [TBL] [Abstract][Full Text] [Related]
14. Increasing salinity of fibrinogen solvent generates stable fibrin hydrogels for cell delivery or tissue engineering. Jarrell DK; Vanderslice EJ; Lennon ML; Lyons AC; VeDepo MC; Jacot JG PLoS One; 2021; 16(5):e0239242. PubMed ID: 34010323 [TBL] [Abstract][Full Text] [Related]
15. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related]
16. Boosting angiogenesis and functional vascularization in injectable dextran-hyaluronic acid hydrogels by endothelial-like mesenchymal stromal cells. Portalska KJ; Teixeira LM; Leijten JC; Jin R; van Blitterswijk C; de Boer J; Karperien M Tissue Eng Part A; 2014 Feb; 20(3-4):819-29. PubMed ID: 24070233 [TBL] [Abstract][Full Text] [Related]
17. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Gaebel R; Ma N; Liu J; Guan J; Koch L; Klopsch C; Gruene M; Toelk A; Wang W; Mark P; Wang F; Chichkov B; Li W; Steinhoff G Biomaterials; 2011 Dec; 32(35):9218-30. PubMed ID: 21911255 [TBL] [Abstract][Full Text] [Related]
18. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
19. Hypoxia-induced amniotic fluid stem cell secretome augments cardiomyocyte proliferation and enhances cardioprotective effects under hypoxic-ischemic conditions. Kukumberg M; Phermthai T; Wichitwiengrat S; Wang X; Arjunan S; Chong SY; Fong CY; Wang JW; Rufaihah AJ; Mattar CNZ Sci Rep; 2021 Jan; 11(1):163. PubMed ID: 33420256 [TBL] [Abstract][Full Text] [Related]
20. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. McFadden TM; Duffy GP; Allen AB; Stevens HY; Schwarzmaier SM; Plesnila N; Murphy JM; Barry FP; Guldberg RE; O'Brien FJ Acta Biomater; 2013 Dec; 9(12):9303-16. PubMed ID: 23958783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]