BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25517655)

  • 21. Spotlight on Lattice Degeneration Imaging Techniques.
    Maltsev DS; Kulikov AN; Shaimova VA; Burnasheva MA; Vasiliev AS
    Clin Ophthalmol; 2023; 17():2383-2395. PubMed ID: 37605766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Study of Ultrasonography and Ultra-Widefield Fundus Photographs for Measurements of the Diameter of Choroidal and Retinal Tumors.
    Wang Q; Yang JY; Wei WB; Yang Q
    Ophthalmol Ther; 2023 Dec; 12(6):3001-3011. PubMed ID: 37603161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proliferative Sickle Cell Retinopathy in the Retinal Periphery Detected by Ultra-Widefield Imaging: A Case Report.
    Giocanti-Aurégan A; Fajnkuchen F
    Case Rep Ophthalmol; 2023; 14(1):159-164. PubMed ID: 37065727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral arterial filling time and peripheral retina fluorescence features in ultra-widefield angiography.
    She HC; Zhang XF; Zhang YP; Jiao X; Zhou HY
    Int J Ophthalmol; 2021; 14(7):1034-1040. PubMed ID: 34282388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Re: Shor et al.: Pneumatic retinopexy for rhegmatogenous retinal detachment in elderly patients (Ophthalmol Retina. 2023;7:959-964).
    Schutz JS
    Ophthalmol Retina; 2024 Apr; 8(4):e13. PubMed ID: 38441509
    [No Abstract]   [Full Text] [Related]  

  • 26. Novel features of degenerative retinoschisis identified using ultra-widefield multicolor channels: A review of 139 eyes.
    Orr S; Hatamnejad A; Sodhi S; Golding J; Pattathil N; Choudhry N
    Acta Ophthalmol; 2024 Mar; ():. PubMed ID: 38533620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Algorithm of automatic identification of diabetic retinopathy foci based on ultra-widefield scanning laser ophthalmoscopy.
    Wang J; Wang SZ; Qin XL; Chen M; Zhang HM; Liu X; Xiang MJ; Hu JB; Huang HY; Lan CJ
    Int J Ophthalmol; 2024; 17(4):610-615. PubMed ID: 38638262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal phenotyping of variants of Alzheimer's disease using ultra-widefield retinal images.
    Csincsik L; Quinn N; Yong KXX; Crutch SJ; Peto T; Lengyel I
    Alzheimers Dement (Amst); 2021; 13(1):e12232. PubMed ID: 34458553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Case Series of Progressive Retinal Detachments in Persistent Fetal Vasculature.
    Somani N; Sheng J; Rao P; Chang E
    Retin Cases Brief Rep; 2023 Jan; ():. PubMed ID: 38166207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial intelligence-assisted management of retinal detachment from ultra-widefield fundus images based on weakly-supervised approach.
    Li H; Cao J; You K; Zhang Y; Ye J
    Front Med (Lausanne); 2024; 11():1326004. PubMed ID: 38379556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroretinography and Rhegmatogenous Retinal Detachment.
    Parvaresh MM
    J Ophthalmic Vis Res; 2018; 13(3):217-218. PubMed ID: 30090174
    [No Abstract]   [Full Text] [Related]  

  • 32. Measurement inaccuracies in widefield imaging-a cautionary tale.
    Lucente A; Taloni A; Scorcia V; Giannaccare G
    Graefes Arch Clin Exp Ophthalmol; 2024 Apr; 262(4):1365-1367. PubMed ID: 38175231
    [No Abstract]   [Full Text] [Related]  

  • 33. Widefield Perivenular Inner Nuclear Layer Hyperreflectivity.
    Vaz M; Cabral D
    Ophthalmol Retina; 2023 Oct; 7(10):856. PubMed ID: 37278671
    [No Abstract]   [Full Text] [Related]  

  • 34. Deep Learning-Based Automated Detection of Retinal Breaks and Detachments on Fundus Photography.
    Christ M; Habra O; Monnin K; Vallotton K; Sznitman R; Wolf S; Zinkernagel M; Márquez Neila P
    Transl Vis Sci Technol; 2024 Apr; 13(4):1. PubMed ID: 38564203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-Widefield Imaging as a Teleophthalmology Screening Tool for Ocular Pathology.
    Ahmad TR; Situ WA; Chan NT; Keenan JD; Stewart JM
    Clin Ophthalmol; 2023; 17():3225-3234. PubMed ID: 37927576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images.
    Zhang J; Sha D; Ma Y; Zhang D; Tan T; Xu X; Yi Q; Zhao Y
    Front Cell Dev Biol; 2023; 11():1181305. PubMed ID: 37215081
    [No Abstract]   [Full Text] [Related]  

  • 37. Ultra-wide-field fundus photography compared to ophthalmoscopy in diagnosing and classifying major retinal diseases.
    Midena E; Marchione G; Di Giorgio S; Rotondi G; Longhin E; Frizziero L; Pilotto E; Parrozzani R; Midena G
    Sci Rep; 2022 Nov; 12(1):19287. PubMed ID: 36369463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery: a pilot study.
    Fung THM; John NCRA; Guillemaut JY; Yorston D; Frohlich D; Steel DHW; Williamson TH;
    Graefes Arch Clin Exp Ophthalmol; 2023 Mar; 261(3):715-721. PubMed ID: 36303063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of mydriasis and eye steering in ultrawide field imaging for detecting peripheral retinal lesions in myopic patients.
    Li M; Yang D; Shen Y; Shang J; Niu L; Yu Y; Wang X; Yao P; Zhou X
    Br J Ophthalmol; 2023 Jul; 107(7):1018-1024. PubMed ID: 35241443
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.