These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies. Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515 [TBL] [Abstract][Full Text] [Related]
8. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Deng ZJ; Liang M; Toth I; Monteiro M; Minchin RF Nanotoxicology; 2013 May; 7(3):314-22. PubMed ID: 22394123 [TBL] [Abstract][Full Text] [Related]
9. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity. De Riccardis F; Izzo I; Montesarchio D; Tecilla P Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613 [TBL] [Abstract][Full Text] [Related]
10. Ultrasonic, chemical stability and preparation of self-assembled fullerene[C60]-gold nanoparticle films. Ko WB; Yun JM; Jo SW; Shon YS Ultrasonics; 2006 Dec; 44 Suppl 1():e363-6. PubMed ID: 16814825 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Zhang H; Cui H Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685 [TBL] [Abstract][Full Text] [Related]
12. Effect of charge regulation and ion-dipole interactions on the selectivity of protein-nanoparticle binding. Barroso da Silva FL; Boström M; Persson C Langmuir; 2014 Apr; 30(14):4078-83. PubMed ID: 24580378 [TBL] [Abstract][Full Text] [Related]
13. Small molecule- and amino acid-induced aggregation of gold nanoparticles. Zakaria HM; Shah A; Konieczny M; Hoffmann JA; Nijdam AJ; Reeves ME Langmuir; 2013 Jun; 29(25):7661-73. PubMed ID: 23718319 [TBL] [Abstract][Full Text] [Related]
14. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647 [TBL] [Abstract][Full Text] [Related]
15. Kinetic approach for the study of noncovalent interaction between [Ru(NH3)5pz]2+ and gold nanoparticles. Grueso E; Alcantara D; Martinez J; Mancera M; Penades S; Sanchez F; Pradogotor R J Phys Chem A; 2007 Oct; 111(39):9769-74. PubMed ID: 17850050 [TBL] [Abstract][Full Text] [Related]
16. Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models. Torrano AA; Pereira ÂS; Oliveira ON; Barros-Timmons A Colloids Surf B Biointerfaces; 2013 Aug; 108():120-6. PubMed ID: 23528608 [TBL] [Abstract][Full Text] [Related]
17. Formation of polyelectrolyte-gold nanoparticle necklaces on paper. Ngo YH; Li D; Simon GP; Garnier G J Colloid Interface Sci; 2013 Sep; 405():71-7. PubMed ID: 23746438 [TBL] [Abstract][Full Text] [Related]
18. Interplay of secondary structure and charge on the diffusion of a polypeptide through negatively charged aqueous pores. Chittchang M; Mitra AK; Johnston TP Pharm Res; 2007 Mar; 24(3):502-11. PubMed ID: 17245654 [TBL] [Abstract][Full Text] [Related]
19. Robust ligand shells for biological applications of gold nanoparticles. Duchesne L; Gentili D; Comes-Franchini M; Fernig DG Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409 [TBL] [Abstract][Full Text] [Related]
20. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Nangia S; Sureshkumar R Langmuir; 2012 Dec; 28(51):17666-71. PubMed ID: 23088323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]